{"title":"细胞迁移中定义平均首过时间的若干边界值问题综述","authors":"Hélia Serrano, Ramón F. Álvarez-Estrada","doi":"10.3390/axioms13080537","DOIUrl":null,"url":null,"abstract":"The mean first-passage time represents the average time for a migrating cell within its environment, starting from a certain position, to reach a specific location or target for the first time. In this feature article, we provide an overview of the characterization of the mean first-passage time of cells moving inside two- or three-dimensional domains, subject to various boundary conditions (Dirichlet, Neumann, Robin, or mixed), through the so-called adjoint diffusion equation. We concentrate on reducing the latter to inhomogeneous linear integral equations for certain density functions on the boundaries. The integral equations yield the mean first-passage time exactly for a very reduced set of boundaries. For various boundary surfaces, which include small deformations of the exactly solvable boundaries, the integral equations provide approximate solutions. Moreover, the method also allows to deal approximately with mixed boundary conditions, which constitute a genuine long-standing and open problem. New plots, figures, and discussions are presented, aimed at clarifying the analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Some Boundary Value Problems Defining the Mean First-Passage Time in Cell Migration\",\"authors\":\"Hélia Serrano, Ramón F. Álvarez-Estrada\",\"doi\":\"10.3390/axioms13080537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean first-passage time represents the average time for a migrating cell within its environment, starting from a certain position, to reach a specific location or target for the first time. In this feature article, we provide an overview of the characterization of the mean first-passage time of cells moving inside two- or three-dimensional domains, subject to various boundary conditions (Dirichlet, Neumann, Robin, or mixed), through the so-called adjoint diffusion equation. We concentrate on reducing the latter to inhomogeneous linear integral equations for certain density functions on the boundaries. The integral equations yield the mean first-passage time exactly for a very reduced set of boundaries. For various boundary surfaces, which include small deformations of the exactly solvable boundaries, the integral equations provide approximate solutions. Moreover, the method also allows to deal approximately with mixed boundary conditions, which constitute a genuine long-standing and open problem. New plots, figures, and discussions are presented, aimed at clarifying the analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13080537\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13080537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Review on Some Boundary Value Problems Defining the Mean First-Passage Time in Cell Migration
The mean first-passage time represents the average time for a migrating cell within its environment, starting from a certain position, to reach a specific location or target for the first time. In this feature article, we provide an overview of the characterization of the mean first-passage time of cells moving inside two- or three-dimensional domains, subject to various boundary conditions (Dirichlet, Neumann, Robin, or mixed), through the so-called adjoint diffusion equation. We concentrate on reducing the latter to inhomogeneous linear integral equations for certain density functions on the boundaries. The integral equations yield the mean first-passage time exactly for a very reduced set of boundaries. For various boundary surfaces, which include small deformations of the exactly solvable boundaries, the integral equations provide approximate solutions. Moreover, the method also allows to deal approximately with mixed boundary conditions, which constitute a genuine long-standing and open problem. New plots, figures, and discussions are presented, aimed at clarifying the analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.