基于位置模糊编队控制的分布式观测器,用于具有输入饱和度的无人水面舰艇

Jixiang Li, Tao Liu, Yuhang Liu, Tianhang Guan, Zesong Zeng
{"title":"基于位置模糊编队控制的分布式观测器,用于具有输入饱和度的无人水面舰艇","authors":"Jixiang Li, Tao Liu, Yuhang Liu, Tianhang Guan, Zesong Zeng","doi":"10.1177/14750902241261121","DOIUrl":null,"url":null,"abstract":"In this article, a control issue is investigated for achieving distributed formation forming and tracking of multiple unmanned surface vessels (USV) subjected to unknown model dynamics and external disturbance. Additionally, the constraints posed by the lack of velocity measurements and input saturation are considered for each USV. For this purpose, two types of distributed position-based control schemes are presented to constitute formation shape and track target trajectory by steering multiple USVs. The first control scheme is based on acquiring absolute position measurements and communication data, while the second control scheme relies on relative position measurements. In the two aforementioned control schemes, two different types of observers are scheduled to provide essential data support for the corresponding controllers. Then, the unknown data that include unknown model dynamics and external disturbance are approximated by a fuzzy logic system and adaptive laws, respectively. In addressing the issue of controller input saturation, a smooth function and auxiliary system are imported to eliminate the effect of actuator saturation. Finally, suitable Lyapunov functions are selected to analyze the theoretical feasibility of the two designed schemes. Corresponding digital simulations are exhibited to further examine the robustness and effectiveness of the designed control schemes.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed observer-based position-based fuzzy formation control for unmanned surface vessels with input saturation\",\"authors\":\"Jixiang Li, Tao Liu, Yuhang Liu, Tianhang Guan, Zesong Zeng\",\"doi\":\"10.1177/14750902241261121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a control issue is investigated for achieving distributed formation forming and tracking of multiple unmanned surface vessels (USV) subjected to unknown model dynamics and external disturbance. Additionally, the constraints posed by the lack of velocity measurements and input saturation are considered for each USV. For this purpose, two types of distributed position-based control schemes are presented to constitute formation shape and track target trajectory by steering multiple USVs. The first control scheme is based on acquiring absolute position measurements and communication data, while the second control scheme relies on relative position measurements. In the two aforementioned control schemes, two different types of observers are scheduled to provide essential data support for the corresponding controllers. Then, the unknown data that include unknown model dynamics and external disturbance are approximated by a fuzzy logic system and adaptive laws, respectively. In addressing the issue of controller input saturation, a smooth function and auxiliary system are imported to eliminate the effect of actuator saturation. Finally, suitable Lyapunov functions are selected to analyze the theoretical feasibility of the two designed schemes. Corresponding digital simulations are exhibited to further examine the robustness and effectiveness of the designed control schemes.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902241261121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241261121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在未知模型动态和外部干扰条件下实现多艘无人水面舰艇(USV)分布式编队和跟踪的控制问题。此外,还考虑了每艘 USV 缺乏速度测量和输入饱和所带来的限制。为此,提出了两种基于位置的分布式控制方案,通过操纵多个 USV 来构成编队形状和跟踪目标轨迹。第一种控制方案基于获取绝对位置测量值和通信数据,而第二种控制方案则依赖于相对位置测量值。在上述两种控制方案中,安排了两种不同类型的观测器为相应的控制器提供基本数据支持。然后,包括未知模型动态和外部干扰在内的未知数据分别由模糊逻辑系统和自适应法则近似处理。在解决控制器输入饱和问题时,导入平滑函数和辅助系统来消除执行器饱和的影响。最后,选择合适的 Lyapunov 函数来分析两种设计方案的理论可行性。通过相应的数字仿真,进一步检验了所设计控制方案的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed observer-based position-based fuzzy formation control for unmanned surface vessels with input saturation
In this article, a control issue is investigated for achieving distributed formation forming and tracking of multiple unmanned surface vessels (USV) subjected to unknown model dynamics and external disturbance. Additionally, the constraints posed by the lack of velocity measurements and input saturation are considered for each USV. For this purpose, two types of distributed position-based control schemes are presented to constitute formation shape and track target trajectory by steering multiple USVs. The first control scheme is based on acquiring absolute position measurements and communication data, while the second control scheme relies on relative position measurements. In the two aforementioned control schemes, two different types of observers are scheduled to provide essential data support for the corresponding controllers. Then, the unknown data that include unknown model dynamics and external disturbance are approximated by a fuzzy logic system and adaptive laws, respectively. In addressing the issue of controller input saturation, a smooth function and auxiliary system are imported to eliminate the effect of actuator saturation. Finally, suitable Lyapunov functions are selected to analyze the theoretical feasibility of the two designed schemes. Corresponding digital simulations are exhibited to further examine the robustness and effectiveness of the designed control schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
期刊最新文献
Integrated design method for protection against vibration of offshore platform plate structure A grouping module assessment method for ocean engineering systems: Subsea tree system as a case Effect of pre-swirl stator angles on broadband noise considering hydrodynamic performance of pump-jet propeller Effect of preload scatter on fatigue life of subsea pipeline connector bolts located at suspended span section A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1