{"title":"基于概念网格构建神经网络的趣味性指数","authors":"M. M. Zueva, S. O. Kuznetsov","doi":"10.1134/S000511792403010X","DOIUrl":null,"url":null,"abstract":"<p>The difficulty of interpreting performance of neural networks is a well-known problem, which is attracting a lot of attention. In particular, neural networks based on concept lattices present a promising direction in this area. Selection of formal concepts for building a neural network has a key effect on the quality of its performance. Criteria for selecting formal concepts can be based on interestingness indices, when concepts with the highest values of a certain index are used to build a neural network. This article studies the influence of the choice of an interestingness index on the neural network performance.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":"85 3","pages":"272 - 278"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interestingness Indices for Building Neural Networks Based on Concept Lattices\",\"authors\":\"M. M. Zueva, S. O. Kuznetsov\",\"doi\":\"10.1134/S000511792403010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The difficulty of interpreting performance of neural networks is a well-known problem, which is attracting a lot of attention. In particular, neural networks based on concept lattices present a promising direction in this area. Selection of formal concepts for building a neural network has a key effect on the quality of its performance. Criteria for selecting formal concepts can be based on interestingness indices, when concepts with the highest values of a certain index are used to build a neural network. This article studies the influence of the choice of an interestingness index on the neural network performance.</p>\",\"PeriodicalId\":55411,\"journal\":{\"name\":\"Automation and Remote Control\",\"volume\":\"85 3\",\"pages\":\"272 - 278\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation and Remote Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S000511792403010X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S000511792403010X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Interestingness Indices for Building Neural Networks Based on Concept Lattices
The difficulty of interpreting performance of neural networks is a well-known problem, which is attracting a lot of attention. In particular, neural networks based on concept lattices present a promising direction in this area. Selection of formal concepts for building a neural network has a key effect on the quality of its performance. Criteria for selecting formal concepts can be based on interestingness indices, when concepts with the highest values of a certain index are used to build a neural network. This article studies the influence of the choice of an interestingness index on the neural network performance.
期刊介绍:
Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).