{"title":"内卷不变函数希尔伯特空间的转移原理","authors":"Santu Bera, Sameer Chavan, Shubham Jain","doi":"arxiv-2408.04384","DOIUrl":null,"url":null,"abstract":"Let $\\sigma : \\mathbb C^d \\rightarrow \\mathbb C^d$ be an affine-linear\ninvolution such that $J_\\sigma = -1$ and let $U, V$ be two domains in $\\mathbb\nC^d$ with $U$ being $\\sigma$-invariant. Let $\\phi : U \\rightarrow V$ be a\n$\\sigma$-invariant $2$-proper map such that $J_\\phi$ is affine-linear and let\n$\\mathscr H(U)$ be a $\\sigma$-invariant reproducing kernel Hilbert space of\ncomplex-valued holomorphic functions on $U.$ It is shown that the space\n$\\mathscr H_\\phi(V):=\\{f \\in \\mathrm{Hol}(V) : J_\\phi \\cdot f \\circ \\phi \\in\n\\mathscr H(U)\\}$ endowed with the norm $\\|f\\|_\\phi :=\\|J_\\phi \\cdot f \\circ\n\\phi\\|_{\\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear\nmapping $\\varGamma_\\phi$ defined by $ \\varGamma_\\phi(f) = J_\\phi \\cdot f \\circ\n\\phi,$ $f \\in \\mathrm{Hol}(V),$ is a unitary from $\\mathscr H_\\phi(V)$ onto\n$\\{f \\in \\mathscr H(U) : f = -f \\circ \\sigma\\}.$ Moreover, a neat formula for\nthe reproducing kernel $\\kappa_{\\phi}$ of $\\mathscr H_\\phi(V)$ in terms of the\nreproducing kernel of $\\mathscr H(U)$ is given. The above scheme is applicable\nto symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and\n$d$-dimensional egg domain. This recovers some known results. Our result not\nonly yields a candidate for Hardy spaces but also an analog of von Neumann's\ninequality for contractive tuples naturally associated with these domains.\nUnlike the existing techniques, we capitalize on the methods from several\ncomplex variables.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transference principle for involution-invariant functional Hilbert spaces\",\"authors\":\"Santu Bera, Sameer Chavan, Shubham Jain\",\"doi\":\"arxiv-2408.04384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\sigma : \\\\mathbb C^d \\\\rightarrow \\\\mathbb C^d$ be an affine-linear\\ninvolution such that $J_\\\\sigma = -1$ and let $U, V$ be two domains in $\\\\mathbb\\nC^d$ with $U$ being $\\\\sigma$-invariant. Let $\\\\phi : U \\\\rightarrow V$ be a\\n$\\\\sigma$-invariant $2$-proper map such that $J_\\\\phi$ is affine-linear and let\\n$\\\\mathscr H(U)$ be a $\\\\sigma$-invariant reproducing kernel Hilbert space of\\ncomplex-valued holomorphic functions on $U.$ It is shown that the space\\n$\\\\mathscr H_\\\\phi(V):=\\\\{f \\\\in \\\\mathrm{Hol}(V) : J_\\\\phi \\\\cdot f \\\\circ \\\\phi \\\\in\\n\\\\mathscr H(U)\\\\}$ endowed with the norm $\\\\|f\\\\|_\\\\phi :=\\\\|J_\\\\phi \\\\cdot f \\\\circ\\n\\\\phi\\\\|_{\\\\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear\\nmapping $\\\\varGamma_\\\\phi$ defined by $ \\\\varGamma_\\\\phi(f) = J_\\\\phi \\\\cdot f \\\\circ\\n\\\\phi,$ $f \\\\in \\\\mathrm{Hol}(V),$ is a unitary from $\\\\mathscr H_\\\\phi(V)$ onto\\n$\\\\{f \\\\in \\\\mathscr H(U) : f = -f \\\\circ \\\\sigma\\\\}.$ Moreover, a neat formula for\\nthe reproducing kernel $\\\\kappa_{\\\\phi}$ of $\\\\mathscr H_\\\\phi(V)$ in terms of the\\nreproducing kernel of $\\\\mathscr H(U)$ is given. The above scheme is applicable\\nto symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and\\n$d$-dimensional egg domain. This recovers some known results. Our result not\\nonly yields a candidate for Hardy spaces but also an analog of von Neumann's\\ninequality for contractive tuples naturally associated with these domains.\\nUnlike the existing techniques, we capitalize on the methods from several\\ncomplex variables.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A transference principle for involution-invariant functional Hilbert spaces
Let $\sigma : \mathbb C^d \rightarrow \mathbb C^d$ be an affine-linear
involution such that $J_\sigma = -1$ and let $U, V$ be two domains in $\mathbb
C^d$ with $U$ being $\sigma$-invariant. Let $\phi : U \rightarrow V$ be a
$\sigma$-invariant $2$-proper map such that $J_\phi$ is affine-linear and let
$\mathscr H(U)$ be a $\sigma$-invariant reproducing kernel Hilbert space of
complex-valued holomorphic functions on $U.$ It is shown that the space
$\mathscr H_\phi(V):=\{f \in \mathrm{Hol}(V) : J_\phi \cdot f \circ \phi \in
\mathscr H(U)\}$ endowed with the norm $\|f\|_\phi :=\|J_\phi \cdot f \circ
\phi\|_{\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear
mapping $\varGamma_\phi$ defined by $ \varGamma_\phi(f) = J_\phi \cdot f \circ
\phi,$ $f \in \mathrm{Hol}(V),$ is a unitary from $\mathscr H_\phi(V)$ onto
$\{f \in \mathscr H(U) : f = -f \circ \sigma\}.$ Moreover, a neat formula for
the reproducing kernel $\kappa_{\phi}$ of $\mathscr H_\phi(V)$ in terms of the
reproducing kernel of $\mathscr H(U)$ is given. The above scheme is applicable
to symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and
$d$-dimensional egg domain. This recovers some known results. Our result not
only yields a candidate for Hardy spaces but also an analog of von Neumann's
inequality for contractive tuples naturally associated with these domains.
Unlike the existing techniques, we capitalize on the methods from several
complex variables.