预制钢筋混凝土基桩接缝中使用的拉力搭接接头的实验研究

IF 3 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Structural Concrete Pub Date : 2024-08-07 DOI:10.1002/suco.202301058
Jukka Haavisto, Anssi Laaksonen
{"title":"预制钢筋混凝土基桩接缝中使用的拉力搭接接头的实验研究","authors":"Jukka Haavisto, Anssi Laaksonen","doi":"10.1002/suco.202301058","DOIUrl":null,"url":null,"abstract":"The joints between precast reinforced concrete pile segments in deep foundations are typically mechanically lockable. They include anchor bars embedded inside the ends of each segment, forming lap splices with the main bars. Because of their particular technology, these lap splices are somewhat different from traditional lap splices, as shown in the first part of this paper, where the impact of their specific characteristics on the tensile behavior of the joints is discussed. The experimental section presents the results of 19 tensile tests on these lap splices and compares them with established theoretical models. The roles of various parameters (lap length, type and amount of confining reinforcement, type of anchor bars, and concrete cover thickness) are investigated. One of the major findings indicates a significantly lower lap capacity when using plain‐bar spirals compared to closed‐ribbed stirrups. Additionally, at low stress levels, the models tend to be unconservative. Building on this insight, a modified model is proposed for lap splices provided with plain‐bar spirals.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":"88 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the tension lap splices used in the joints of precast RC foundation piles\",\"authors\":\"Jukka Haavisto, Anssi Laaksonen\",\"doi\":\"10.1002/suco.202301058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The joints between precast reinforced concrete pile segments in deep foundations are typically mechanically lockable. They include anchor bars embedded inside the ends of each segment, forming lap splices with the main bars. Because of their particular technology, these lap splices are somewhat different from traditional lap splices, as shown in the first part of this paper, where the impact of their specific characteristics on the tensile behavior of the joints is discussed. The experimental section presents the results of 19 tensile tests on these lap splices and compares them with established theoretical models. The roles of various parameters (lap length, type and amount of confining reinforcement, type of anchor bars, and concrete cover thickness) are investigated. One of the major findings indicates a significantly lower lap capacity when using plain‐bar spirals compared to closed‐ribbed stirrups. Additionally, at low stress levels, the models tend to be unconservative. Building on this insight, a modified model is proposed for lap splices provided with plain‐bar spirals.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202301058\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202301058","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

深基坑中预制钢筋混凝土桩段之间的接缝通常是可机械锁定的。它们包括嵌入每个桩段两端的锚固钢筋,与主钢筋形成搭接。正如本文第一部分所述,由于其特殊的技术,这些搭接接头与传统的搭接接头有些不同,本文将讨论其特殊性对接头抗拉性能的影响。实验部分介绍了对这些搭接接头进行的 19 次拉伸试验的结果,并将其与已建立的理论模型进行了比较。研究了各种参数(搭接长度、约束钢筋的类型和数量、锚固钢筋的类型以及混凝土覆盖层厚度)的作用。其中一项主要研究结果表明,与闭肋箍筋相比,使用平筋螺旋箍筋时,搭接能力明显较低。此外,在应力水平较低时,模型往往不够保守。在此基础上,针对使用普通螺旋箍筋的搭接接头提出了一种改进模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on the tension lap splices used in the joints of precast RC foundation piles
The joints between precast reinforced concrete pile segments in deep foundations are typically mechanically lockable. They include anchor bars embedded inside the ends of each segment, forming lap splices with the main bars. Because of their particular technology, these lap splices are somewhat different from traditional lap splices, as shown in the first part of this paper, where the impact of their specific characteristics on the tensile behavior of the joints is discussed. The experimental section presents the results of 19 tensile tests on these lap splices and compares them with established theoretical models. The roles of various parameters (lap length, type and amount of confining reinforcement, type of anchor bars, and concrete cover thickness) are investigated. One of the major findings indicates a significantly lower lap capacity when using plain‐bar spirals compared to closed‐ribbed stirrups. Additionally, at low stress levels, the models tend to be unconservative. Building on this insight, a modified model is proposed for lap splices provided with plain‐bar spirals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Concrete
Structural Concrete CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
5.60
自引率
15.60%
发文量
284
审稿时长
3 months
期刊介绍: Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures. Main topics: design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures research about the behaviour of concrete structures development of design methods fib Model Code sustainability of concrete structures.
期刊最新文献
Development of a new analytical model for circular concrete ring segments with dry joints under combined effects Fiber orientation and orientation factors in steel fiber‐reinforced concrete beams with hybrid fibers: A critical review Load‐path analysis of transverse tensile stresses in multiple‐pile caps Mechanical behavior of prestressed UHPC wind turbine tower columns under combined axial compression and bending Experimental investigation on mechanical property and hydration process of sintered sludge cement paste at different water‐binder ratios and curing ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1