{"title":"全基因组 APOBEC3 介导的突变和 HLA 单倍型对癌症免疫原性的综合影响具有性别差异的生存影响","authors":"Faezeh Borzooee, Alireza Heravi-Moussavi, Mani Larijani","doi":"10.1101/2024.08.07.607038","DOIUrl":null,"url":null,"abstract":"APOBEC3A and APOBEC3B genome mutator enzymes drive tumor evolution and drug resistance. However, their mutational activity can also generate neoepitopes that activate cytotoxic T cells (CTLs). Given the high polymorphism of Class I HLA, the CTL immunopeptidome is individual-specific. We used a genome-wide immunogenicity scanning pipeline to assess how APOBEC3A/B-induced mutations affect the immunogenicity of the entire human immunopeptidome, consisting of all possible 8-11mer peptides restricted by several thousand HLA class I alleles. We evaluated several billion APOBEC3-mediated mutations for their potential to alter peptide:MHC and T cell receptor binding, either increasing or decreasing immunogenicity. We then ranked HLA alleles based on the degree to which their restricted immunopeptidome lost or gained immunogenicity when mutated by APOBEC3A or APOBEC3B. We found that HLA class I alleles vary infinitely in the proportions of their immunopeptidome whose immunogenicity is diminished vs. enhanced by APOBEC3-mediated mutations, with mutations in APOBEC3B hotspots having the greatest potential for enhancement of immunogenicity. The cumulative potential of an individual’s HLA haplotype’s immunopeptidome to gain or lose immunogenicity upon APOBEC3-mediated mutation predicts survival in APOBEC3-mutated tumors and correlates with increased CD8+ T cell activation. Thus, HLA haplotype is a prognostic marker in APOBEC3-mutated tumors.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite impact of genome-wide APOBEC3-mediated mutations and HLA haplotype on cancer immunogenicity has a sex-biased survival impact\",\"authors\":\"Faezeh Borzooee, Alireza Heravi-Moussavi, Mani Larijani\",\"doi\":\"10.1101/2024.08.07.607038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"APOBEC3A and APOBEC3B genome mutator enzymes drive tumor evolution and drug resistance. However, their mutational activity can also generate neoepitopes that activate cytotoxic T cells (CTLs). Given the high polymorphism of Class I HLA, the CTL immunopeptidome is individual-specific. We used a genome-wide immunogenicity scanning pipeline to assess how APOBEC3A/B-induced mutations affect the immunogenicity of the entire human immunopeptidome, consisting of all possible 8-11mer peptides restricted by several thousand HLA class I alleles. We evaluated several billion APOBEC3-mediated mutations for their potential to alter peptide:MHC and T cell receptor binding, either increasing or decreasing immunogenicity. We then ranked HLA alleles based on the degree to which their restricted immunopeptidome lost or gained immunogenicity when mutated by APOBEC3A or APOBEC3B. We found that HLA class I alleles vary infinitely in the proportions of their immunopeptidome whose immunogenicity is diminished vs. enhanced by APOBEC3-mediated mutations, with mutations in APOBEC3B hotspots having the greatest potential for enhancement of immunogenicity. The cumulative potential of an individual’s HLA haplotype’s immunopeptidome to gain or lose immunogenicity upon APOBEC3-mediated mutation predicts survival in APOBEC3-mutated tumors and correlates with increased CD8+ T cell activation. Thus, HLA haplotype is a prognostic marker in APOBEC3-mutated tumors.\",\"PeriodicalId\":501233,\"journal\":{\"name\":\"bioRxiv - Cancer Biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cancer Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.607038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
APOBEC3A 和 APOBEC3B 基因组突变酶驱动肿瘤进化和耐药性。然而,它们的突变活性也能产生激活细胞毒性 T 细胞(CTL)的新表位。鉴于 I 类 HLA 的高度多态性,CTL 免疫肽组具有个体特异性。我们使用全基因组免疫原性扫描管道来评估 APOBEC3A/B 诱导的突变如何影响整个人类免疫肽组的免疫原性,该免疫肽组由数千个 HLA I 类等位基因限制的所有可能的 8-11mer 肽组成。我们评估了数十亿个 APOBEC3 介导的突变,看它们是否可能改变肽与 MHC 和 T 细胞受体的结合,从而增加或减少免疫原性。然后,我们根据其受限免疫肽组在 APOBEC3A 或 APOBEC3B 突变时失去或获得免疫原性的程度对 HLA 等位基因进行了排序。我们发现,HLA I 类等位基因在其免疫肽组中因 APOBEC3 介导的突变而降低或增强免疫原性的比例存在无限差异,其中 APOBEC3B 热点突变增强免疫原性的潜力最大。个体的 HLA 单倍型免疫肽组在 APOBEC3 介导的突变后获得或丧失免疫原性的累积潜力可预测 APOBEC3 突变肿瘤的存活率,并与 CD8+ T 细胞活化的增加相关。因此,HLA单倍型是APOBEC3突变肿瘤的预后标志物。
Composite impact of genome-wide APOBEC3-mediated mutations and HLA haplotype on cancer immunogenicity has a sex-biased survival impact
APOBEC3A and APOBEC3B genome mutator enzymes drive tumor evolution and drug resistance. However, their mutational activity can also generate neoepitopes that activate cytotoxic T cells (CTLs). Given the high polymorphism of Class I HLA, the CTL immunopeptidome is individual-specific. We used a genome-wide immunogenicity scanning pipeline to assess how APOBEC3A/B-induced mutations affect the immunogenicity of the entire human immunopeptidome, consisting of all possible 8-11mer peptides restricted by several thousand HLA class I alleles. We evaluated several billion APOBEC3-mediated mutations for their potential to alter peptide:MHC and T cell receptor binding, either increasing or decreasing immunogenicity. We then ranked HLA alleles based on the degree to which their restricted immunopeptidome lost or gained immunogenicity when mutated by APOBEC3A or APOBEC3B. We found that HLA class I alleles vary infinitely in the proportions of their immunopeptidome whose immunogenicity is diminished vs. enhanced by APOBEC3-mediated mutations, with mutations in APOBEC3B hotspots having the greatest potential for enhancement of immunogenicity. The cumulative potential of an individual’s HLA haplotype’s immunopeptidome to gain or lose immunogenicity upon APOBEC3-mediated mutation predicts survival in APOBEC3-mutated tumors and correlates with increased CD8+ T cell activation. Thus, HLA haplotype is a prognostic marker in APOBEC3-mutated tumors.