针对具有任意形状的 4D 印刷分层结构的机器学习驱动的正向预测和反向设计

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Materials Today Pub Date : 2024-08-07 DOI:10.1016/j.apmt.2024.102373
Liuchao Jin, Shouyi Yu, Jianxiang Cheng, Haitao Ye, Xiaoya Zhai, Jingchao Jiang, Kang Zhang, Bingcong Jian, Mahdi Bodaghi, Qi Ge, Wei-Hsin Liao
{"title":"针对具有任意形状的 4D 印刷分层结构的机器学习驱动的正向预测和反向设计","authors":"Liuchao Jin, Shouyi Yu, Jianxiang Cheng, Haitao Ye, Xiaoya Zhai, Jingchao Jiang, Kang Zhang, Bingcong Jian, Mahdi Bodaghi, Qi Ge, Wei-Hsin Liao","doi":"10.1016/j.apmt.2024.102373","DOIUrl":null,"url":null,"abstract":"The forward prediction and inverse design of 4D printing have primarily focused on 2D rectangular surfaces or plates, leaving the challenge of 4D printing parts with arbitrary shapes underexplored. This gap arises from the difficulty of handling varying input sizes in machine learning paradigms. To address this, we propose a novel machine learning-driven approach for forward prediction and inverse design tailored to 4D printed hierarchical architectures with arbitrary shapes. Our method encodes non-rectangular shapes with special identifiers, transforming the design domain into a format suitable for machine learning analysis. Using Residual Networks (ResNet) for forward prediction and evolutionary algorithms (EA) for inverse design, our approach achieves accurate and efficient predictions and designs. The results validate the effectiveness of our proposed method, with the forward prediction model achieving a loss below , and the inverse optimization model maintaining an error near 1 mm, which is low relative to the entire shape of the optimized model. These outcomes demonstrate the capability of our approach to accurately predict and design complex hierarchical structures in 4D printing applications.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"90 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning driven forward prediction and inverse design for 4D printed hierarchical architecture with arbitrary shapes\",\"authors\":\"Liuchao Jin, Shouyi Yu, Jianxiang Cheng, Haitao Ye, Xiaoya Zhai, Jingchao Jiang, Kang Zhang, Bingcong Jian, Mahdi Bodaghi, Qi Ge, Wei-Hsin Liao\",\"doi\":\"10.1016/j.apmt.2024.102373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forward prediction and inverse design of 4D printing have primarily focused on 2D rectangular surfaces or plates, leaving the challenge of 4D printing parts with arbitrary shapes underexplored. This gap arises from the difficulty of handling varying input sizes in machine learning paradigms. To address this, we propose a novel machine learning-driven approach for forward prediction and inverse design tailored to 4D printed hierarchical architectures with arbitrary shapes. Our method encodes non-rectangular shapes with special identifiers, transforming the design domain into a format suitable for machine learning analysis. Using Residual Networks (ResNet) for forward prediction and evolutionary algorithms (EA) for inverse design, our approach achieves accurate and efficient predictions and designs. The results validate the effectiveness of our proposed method, with the forward prediction model achieving a loss below , and the inverse optimization model maintaining an error near 1 mm, which is low relative to the entire shape of the optimized model. These outcomes demonstrate the capability of our approach to accurately predict and design complex hierarchical structures in 4D printing applications.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102373\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

4D 打印的正向预测和反向设计主要集中在二维矩形表面或板材上,对于任意形状的 4D 打印部件的挑战还没有得到充分探索。这一空白源于机器学习范式难以处理不同的输入尺寸。为了解决这个问题,我们提出了一种新颖的机器学习驱动方法,用于为具有任意形状的 4D 打印分层结构定制正向预测和逆向设计。我们的方法用特殊标识符对非矩形形状进行编码,将设计域转换为适合机器学习分析的格式。我们的方法使用残差网络(ResNet)进行正向预测,使用进化算法(EA)进行逆向设计,从而实现了准确高效的预测和设计。结果验证了我们提出的方法的有效性,正向预测模型的损耗低于 ,而反向优化模型的误差保持在 1 毫米附近,相对于优化模型的整个形状而言,误差较小。这些结果证明了我们的方法在 4D 打印应用中准确预测和设计复杂层次结构的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning driven forward prediction and inverse design for 4D printed hierarchical architecture with arbitrary shapes
The forward prediction and inverse design of 4D printing have primarily focused on 2D rectangular surfaces or plates, leaving the challenge of 4D printing parts with arbitrary shapes underexplored. This gap arises from the difficulty of handling varying input sizes in machine learning paradigms. To address this, we propose a novel machine learning-driven approach for forward prediction and inverse design tailored to 4D printed hierarchical architectures with arbitrary shapes. Our method encodes non-rectangular shapes with special identifiers, transforming the design domain into a format suitable for machine learning analysis. Using Residual Networks (ResNet) for forward prediction and evolutionary algorithms (EA) for inverse design, our approach achieves accurate and efficient predictions and designs. The results validate the effectiveness of our proposed method, with the forward prediction model achieving a loss below , and the inverse optimization model maintaining an error near 1 mm, which is low relative to the entire shape of the optimized model. These outcomes demonstrate the capability of our approach to accurately predict and design complex hierarchical structures in 4D printing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Materials Today
Applied Materials Today Materials Science-General Materials Science
CiteScore
14.90
自引率
3.60%
发文量
393
审稿时长
26 days
期刊介绍: Journal Name: Applied Materials Today Focus: Multi-disciplinary, rapid-publication journal Focused on cutting-edge applications of novel materials Overview: New materials discoveries have led to exciting fundamental breakthroughs. Materials research is now moving towards the translation of these scientific properties and principles.
期刊最新文献
Electrospinning and melt electrowriting of a tunable triblock-copolymer composed of poly(ε-caprolactone) and poly(L-lactic acid) for biomedical applications Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities Colorimetric polymer nanofilm-based time-temperature indicators for recording irreversible changes of temperatures in cold chain Spinodally reinforced W-Cr fusion armour Dual cytokine release from microsphere-containing decellularized extracellular matrix immune regulation promotes bone repair and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1