{"title":"用于高性能自供电肖特基光电二极管的二维 InP 晶体的空间约束合成","authors":"Lin-Qing Yue, Yan-Lei Shi, Sheng Qiang, Nie-Feng Sun, Jing-Kai Qin, Liang Zhen, Cheng-Yan Xu","doi":"10.1016/j.apmt.2024.102376","DOIUrl":null,"url":null,"abstract":"Atomic-thin III-V semiconductors with nanometer thickness have emerge as promising candidate for diverse applications in optoelectronics. In this work, by using a space-confine approach, ultra-thin indium phosphide (InP) crystals were obtained with thickness scaled down 10 nm, which demonstrate an extremely giant second harmonic generation (SHG) susceptivity up to 2.05 × 10 m/V under 1064 nm excitation, among the best of reported two-dimensional semiconductors. In addition, a high-performance Schottky photodiode with asymmetric electrical contact was implemented. The self-powered device exhibits a high responsivity of 15.3 mA W and a detectivity of 1.94 × 10 Jones under 532 nm light illumination, revealing a high on/off ratio of photocurrent exceeding 10 under zero bias, accompanied by rapid response times of only milliseconds. The results offer a streamlined avenue to develop ultrathin III-V semiconductor for high-performance photodetectors in future applications.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"1 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-confined synthesis of two-dimensional InP crystals for high-performance self-powered Schottky photodiode\",\"authors\":\"Lin-Qing Yue, Yan-Lei Shi, Sheng Qiang, Nie-Feng Sun, Jing-Kai Qin, Liang Zhen, Cheng-Yan Xu\",\"doi\":\"10.1016/j.apmt.2024.102376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic-thin III-V semiconductors with nanometer thickness have emerge as promising candidate for diverse applications in optoelectronics. In this work, by using a space-confine approach, ultra-thin indium phosphide (InP) crystals were obtained with thickness scaled down 10 nm, which demonstrate an extremely giant second harmonic generation (SHG) susceptivity up to 2.05 × 10 m/V under 1064 nm excitation, among the best of reported two-dimensional semiconductors. In addition, a high-performance Schottky photodiode with asymmetric electrical contact was implemented. The self-powered device exhibits a high responsivity of 15.3 mA W and a detectivity of 1.94 × 10 Jones under 532 nm light illumination, revealing a high on/off ratio of photocurrent exceeding 10 under zero bias, accompanied by rapid response times of only milliseconds. The results offer a streamlined avenue to develop ultrathin III-V semiconductor for high-performance photodetectors in future applications.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102376\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Space-confined synthesis of two-dimensional InP crystals for high-performance self-powered Schottky photodiode
Atomic-thin III-V semiconductors with nanometer thickness have emerge as promising candidate for diverse applications in optoelectronics. In this work, by using a space-confine approach, ultra-thin indium phosphide (InP) crystals were obtained with thickness scaled down 10 nm, which demonstrate an extremely giant second harmonic generation (SHG) susceptivity up to 2.05 × 10 m/V under 1064 nm excitation, among the best of reported two-dimensional semiconductors. In addition, a high-performance Schottky photodiode with asymmetric electrical contact was implemented. The self-powered device exhibits a high responsivity of 15.3 mA W and a detectivity of 1.94 × 10 Jones under 532 nm light illumination, revealing a high on/off ratio of photocurrent exceeding 10 under zero bias, accompanied by rapid response times of only milliseconds. The results offer a streamlined avenue to develop ultrathin III-V semiconductor for high-performance photodetectors in future applications.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.