{"title":"单像素成像中的压缩采样优化","authors":"D. V. Sych","doi":"10.3103/S1068335624600463","DOIUrl":null,"url":null,"abstract":"<p>Compressed sampling allows to accurately reconstruct a sparse signal even in case of incomplete signal measurements. In this paper, we apply this method to single-pixel imaging and explore the possibilities of image reconstruction by sampling it with an incomplete set of binary light patterns. Using computer simulation, we optimize the image sampling process and find parameters of light patterns such that single-pixel imaging works best.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 6","pages":"202 - 205"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Compressed Sampling in Single-Pixel Imaging\",\"authors\":\"D. V. Sych\",\"doi\":\"10.3103/S1068335624600463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compressed sampling allows to accurately reconstruct a sparse signal even in case of incomplete signal measurements. In this paper, we apply this method to single-pixel imaging and explore the possibilities of image reconstruction by sampling it with an incomplete set of binary light patterns. Using computer simulation, we optimize the image sampling process and find parameters of light patterns such that single-pixel imaging works best.</p>\",\"PeriodicalId\":503,\"journal\":{\"name\":\"Bulletin of the Lebedev Physics Institute\",\"volume\":\"51 6\",\"pages\":\"202 - 205\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Lebedev Physics Institute\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068335624600463\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335624600463","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Compressed Sampling in Single-Pixel Imaging
Compressed sampling allows to accurately reconstruct a sparse signal even in case of incomplete signal measurements. In this paper, we apply this method to single-pixel imaging and explore the possibilities of image reconstruction by sampling it with an incomplete set of binary light patterns. Using computer simulation, we optimize the image sampling process and find parameters of light patterns such that single-pixel imaging works best.
期刊介绍:
Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.