Diyou Jiang , Chunhua Shu , Xianze Jiang , Kerong He , Sanqiu Liu
{"title":"W-Cu 合金的高温力学、热力学和表面 O 吸附特性的理论预测:先进的高温超强度合金材料","authors":"Diyou Jiang , Chunhua Shu , Xianze Jiang , Kerong He , Sanqiu Liu","doi":"10.1016/j.nme.2024.101719","DOIUrl":null,"url":null,"abstract":"<div><p>This paper constructs four alloy structural models of W<sub>15</sub>Cu<sub>1</sub>, W<sub>14</sub>Cu<sub>2</sub>, W<sub>13</sub>Cu<sub>3</sub> and W<sub>12</sub>Cu<sub>4</sub> as research objects. Based on phonon spectra analysis, the structure of W<sub>12</sub>Cu<sub>4</sub> is unstable. Thus, the mechanical and thermodynamic properties for pure W, W<sub>15</sub>Cu<sub>1</sub>, W<sub>14</sub>Cu<sub>2</sub> and W<sub>13</sub>Cu<sub>3</sub> are studied using first-principles methods. The results show that the bulk modulus of W-Cu alloys exhibits the characteristics of high-temperature strength alloys. In particular, the bulk modulus of W<sub>14</sub>Cu<sub>2</sub> and W<sub>13</sub>Cu<sub>3</sub> increases rapidly with temperature increasing; Meanwhile, The W-Cu alloys at high temperatures exhibit low expansion behavior. The coefficient of thermal expansion of W<sub>14</sub>Cu<sub>2</sub> at 1290 K starts to be lower than that of<!--> <!-->W, and decreases with temperature increasing. At 1370 K, the coefficient of thermal expansion of W<sub>13</sub>Cu<sub>3</sub> begins to be lower than that of W<sub>14</sub>Cu<sub>2</sub>, which also decreases with temperature increasing. The W-Cu alloys at high temperatures exhibit excellent phonon thermal conductivity. The phonon thermal conductivity of W<sub>14</sub>Cu<sub>2</sub> at 2230 K transcends pure W and then maintains a thermal conductivity of about 5.55Wm<sup>-1</sup>K<sup>−1</sup>. The phonon thermal conductivity of W<sub>13</sub>Cu<sub>3</sub> at 2140 K begins to transcend W<sub>14</sub>Cu<sub>2</sub>, and also exceeds pure W at 2180 K, and increases rapidly with temperature increasing. At 0 K, the addition of Cu to W reduces the mechanical strength but increases the ductility.</p></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"40 ","pages":"Article 101719"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235217912400142X/pdfft?md5=82cb1ad37c4273bee3431bb8ae55619d&pid=1-s2.0-S235217912400142X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Theoretical prediction of high temperature mechanical, thermodynamic and surface O adsorption properties of W-Cu alloys: Advanced high temperature super strength alloy materials\",\"authors\":\"Diyou Jiang , Chunhua Shu , Xianze Jiang , Kerong He , Sanqiu Liu\",\"doi\":\"10.1016/j.nme.2024.101719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper constructs four alloy structural models of W<sub>15</sub>Cu<sub>1</sub>, W<sub>14</sub>Cu<sub>2</sub>, W<sub>13</sub>Cu<sub>3</sub> and W<sub>12</sub>Cu<sub>4</sub> as research objects. Based on phonon spectra analysis, the structure of W<sub>12</sub>Cu<sub>4</sub> is unstable. Thus, the mechanical and thermodynamic properties for pure W, W<sub>15</sub>Cu<sub>1</sub>, W<sub>14</sub>Cu<sub>2</sub> and W<sub>13</sub>Cu<sub>3</sub> are studied using first-principles methods. The results show that the bulk modulus of W-Cu alloys exhibits the characteristics of high-temperature strength alloys. In particular, the bulk modulus of W<sub>14</sub>Cu<sub>2</sub> and W<sub>13</sub>Cu<sub>3</sub> increases rapidly with temperature increasing; Meanwhile, The W-Cu alloys at high temperatures exhibit low expansion behavior. The coefficient of thermal expansion of W<sub>14</sub>Cu<sub>2</sub> at 1290 K starts to be lower than that of<!--> <!-->W, and decreases with temperature increasing. At 1370 K, the coefficient of thermal expansion of W<sub>13</sub>Cu<sub>3</sub> begins to be lower than that of W<sub>14</sub>Cu<sub>2</sub>, which also decreases with temperature increasing. The W-Cu alloys at high temperatures exhibit excellent phonon thermal conductivity. The phonon thermal conductivity of W<sub>14</sub>Cu<sub>2</sub> at 2230 K transcends pure W and then maintains a thermal conductivity of about 5.55Wm<sup>-1</sup>K<sup>−1</sup>. The phonon thermal conductivity of W<sub>13</sub>Cu<sub>3</sub> at 2140 K begins to transcend W<sub>14</sub>Cu<sub>2</sub>, and also exceeds pure W at 2180 K, and increases rapidly with temperature increasing. At 0 K, the addition of Cu to W reduces the mechanical strength but increases the ductility.</p></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"40 \",\"pages\":\"Article 101719\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235217912400142X/pdfft?md5=82cb1ad37c4273bee3431bb8ae55619d&pid=1-s2.0-S235217912400142X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235217912400142X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235217912400142X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本文以 WCu、WCu、WCu 和 WCu 为研究对象,构建了四种合金结构模型。根据声子谱分析,WCu 的结构是不稳定的。因此,采用第一原理方法研究了纯 W、WCu、WCu 和 WCu 的力学和热力学性质。结果表明,W-Cu 合金的体积模量表现出高温强度合金的特征。特别是,WCu 和 WCu 的体积模量随着温度的升高而迅速增大;同时,W-Cu 合金在高温下表现出低膨胀行为。在 1290 K 时,WCu 的热膨胀系数开始低于 W,并随着温度的升高而降低。在 1370 K 时,WCu 的热膨胀系数开始低于 WCu,并随着温度的升高而降低。高温下的 W-Cu 合金表现出优异的声子热导率。WCu 在 2230 K 时的声子热导率超过了纯 W,然后保持在 5.55WmK 左右。在 2140 K 时,WCu 的声子热导率开始超过 WCu,在 2180 K 时也超过了纯 W,并随着温度的升高而迅速增加。在 0 K 时,W 中添加铜会降低机械强度,但会增加延展性。
Theoretical prediction of high temperature mechanical, thermodynamic and surface O adsorption properties of W-Cu alloys: Advanced high temperature super strength alloy materials
This paper constructs four alloy structural models of W15Cu1, W14Cu2, W13Cu3 and W12Cu4 as research objects. Based on phonon spectra analysis, the structure of W12Cu4 is unstable. Thus, the mechanical and thermodynamic properties for pure W, W15Cu1, W14Cu2 and W13Cu3 are studied using first-principles methods. The results show that the bulk modulus of W-Cu alloys exhibits the characteristics of high-temperature strength alloys. In particular, the bulk modulus of W14Cu2 and W13Cu3 increases rapidly with temperature increasing; Meanwhile, The W-Cu alloys at high temperatures exhibit low expansion behavior. The coefficient of thermal expansion of W14Cu2 at 1290 K starts to be lower than that of W, and decreases with temperature increasing. At 1370 K, the coefficient of thermal expansion of W13Cu3 begins to be lower than that of W14Cu2, which also decreases with temperature increasing. The W-Cu alloys at high temperatures exhibit excellent phonon thermal conductivity. The phonon thermal conductivity of W14Cu2 at 2230 K transcends pure W and then maintains a thermal conductivity of about 5.55Wm-1K−1. The phonon thermal conductivity of W13Cu3 at 2140 K begins to transcend W14Cu2, and also exceeds pure W at 2180 K, and increases rapidly with temperature increasing. At 0 K, the addition of Cu to W reduces the mechanical strength but increases the ductility.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.