利用激光衍射技术制定土壤质地分析标准协议

Isis S. P. C. Scott, Kossi Nouwakpo, Dave Bjorneberg, Christopher Rogers, Lauren Vitko
{"title":"利用激光衍射技术制定土壤质地分析标准协议","authors":"Isis S. P. C. Scott,&nbsp;Kossi Nouwakpo,&nbsp;Dave Bjorneberg,&nbsp;Christopher Rogers,&nbsp;Lauren Vitko","doi":"10.1002/saj2.20738","DOIUrl":null,"url":null,"abstract":"<p>Optical methods including laser diffraction have been increasingly used to measure soil texture and particle size distribution. However, they have not been adopted yet as a routine methodology mainly due to the difficulties in comparing their results to more commonly used techniques (i.e., sedimentation methods). Many attempts exist in the literature to find an agreement between methodologies with relative success. In this work, we aim to improve the agreement between methodologies by adjusting parameters of the laser diffraction analysis, including sample treatment (chemical dispersion, carbonate removal, and sand separation), mode of sample addition (subsampling vs. transmittance matching), and analysis parameters (time of sonication and refractive index). Soil texture class determined by laser diffraction agreed with the sieve–hydrometer method in 78% of the runs when the following parameters were used: (1) Refractive index of 1.44 - 0.100i, (2) 180 s of sonication, (3) sand sieving prior to analysis, and (4) sample dispersion by shaking the sample for 1 h with 5% sodium hexametaphosphate. We observed that adding the entire sample to the analyzer (1 g of soil in 100 mL of dispersant) while keeping the appropriate levels of transmittance through dilution (transmittance matching) is a better way of sample addition in comparison to subsampling, especially for coarser soil samples. This work proposes a standard operation procedure that may broaden the adoption of laser diffraction analysis as a routine soil texture methodology.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1691-1708"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a standard protocol for soil texture analysis using the laser diffraction technique\",\"authors\":\"Isis S. P. C. Scott,&nbsp;Kossi Nouwakpo,&nbsp;Dave Bjorneberg,&nbsp;Christopher Rogers,&nbsp;Lauren Vitko\",\"doi\":\"10.1002/saj2.20738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical methods including laser diffraction have been increasingly used to measure soil texture and particle size distribution. However, they have not been adopted yet as a routine methodology mainly due to the difficulties in comparing their results to more commonly used techniques (i.e., sedimentation methods). Many attempts exist in the literature to find an agreement between methodologies with relative success. In this work, we aim to improve the agreement between methodologies by adjusting parameters of the laser diffraction analysis, including sample treatment (chemical dispersion, carbonate removal, and sand separation), mode of sample addition (subsampling vs. transmittance matching), and analysis parameters (time of sonication and refractive index). Soil texture class determined by laser diffraction agreed with the sieve–hydrometer method in 78% of the runs when the following parameters were used: (1) Refractive index of 1.44 - 0.100i, (2) 180 s of sonication, (3) sand sieving prior to analysis, and (4) sample dispersion by shaking the sample for 1 h with 5% sodium hexametaphosphate. We observed that adding the entire sample to the analyzer (1 g of soil in 100 mL of dispersant) while keeping the appropriate levels of transmittance through dilution (transmittance matching) is a better way of sample addition in comparison to subsampling, especially for coarser soil samples. This work proposes a standard operation procedure that may broaden the adoption of laser diffraction analysis as a routine soil texture methodology.</p>\",\"PeriodicalId\":101043,\"journal\":{\"name\":\"Proceedings - Soil Science Society of America\",\"volume\":\"88 5\",\"pages\":\"1691-1708\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings - Soil Science Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

包括激光衍射在内的光学方法已越来越多地用于测量土壤质地和粒度分布。然而,这些方法尚未被作为常规方法采用,主要原因是很难将其结果与更常用的技术(即沉积法)进行比较。文献中存在许多尝试,试图找到方法之间的一致性,但都相对成功。在这项工作中,我们旨在通过调整激光衍射分析的参数,包括样品处理(化学分散、碳酸盐去除和砂分离)、样品添加模式(子取样与透射率匹配)和分析参数(超声时间和折射率),来提高不同方法之间的一致性。在使用以下参数的情况下,激光衍射法测定的土壤质地等级与筛分-水分测定法的一致率为 78%:(1) 折射率为 1.44 - 0.100i;(2) 超声处理 180 秒;(3) 分析前筛沙;(4) 用 5%六偏磷酸钠振荡样品 1 小时以分散样品。我们观察到,将整个样品加入分析仪(100 毫升分散剂中加入 1 克土壤),同时通过稀释保持适当的透射率水平(透射率匹配),是一种比子取样更好的样品添加方式,尤其是对于较粗的土壤样品。这项工作提出了一种标准操作程序,可扩大激光衍射分析作为常规土壤质地方法的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing a standard protocol for soil texture analysis using the laser diffraction technique

Optical methods including laser diffraction have been increasingly used to measure soil texture and particle size distribution. However, they have not been adopted yet as a routine methodology mainly due to the difficulties in comparing their results to more commonly used techniques (i.e., sedimentation methods). Many attempts exist in the literature to find an agreement between methodologies with relative success. In this work, we aim to improve the agreement between methodologies by adjusting parameters of the laser diffraction analysis, including sample treatment (chemical dispersion, carbonate removal, and sand separation), mode of sample addition (subsampling vs. transmittance matching), and analysis parameters (time of sonication and refractive index). Soil texture class determined by laser diffraction agreed with the sieve–hydrometer method in 78% of the runs when the following parameters were used: (1) Refractive index of 1.44 - 0.100i, (2) 180 s of sonication, (3) sand sieving prior to analysis, and (4) sample dispersion by shaking the sample for 1 h with 5% sodium hexametaphosphate. We observed that adding the entire sample to the analyzer (1 g of soil in 100 mL of dispersant) while keeping the appropriate levels of transmittance through dilution (transmittance matching) is a better way of sample addition in comparison to subsampling, especially for coarser soil samples. This work proposes a standard operation procedure that may broaden the adoption of laser diffraction analysis as a routine soil texture methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A portable low-cost incubation chamber for real-time characterization of soil respiration Novel slow-release fertilizer promotes nitrogen circularity while increasing soil organic carbon Erratum to: Effects of maize residue and biochar applications on soil δ13C and organic carbon sources in a subtropical paddy rice ecosystem Microbial inocula enhance effects of biochar amendments on crop productivity, soil health, and microbial communities: A meta-analysis Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1