西诺明通过抑制 PI3K-Akt 信号通路缓解类风湿性关节炎,网络药理学、分子对接和实验验证证明了这一点

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2024-08-06 DOI:10.2147/dddt.s475959
Qingyang Liu, Jian Wang, Chunhui Ding, Ying Chu, Fengying Jiang, Yunxia Hu, Haifeng Li, Qiubo Wang
{"title":"西诺明通过抑制 PI3K-Akt 信号通路缓解类风湿性关节炎,网络药理学、分子对接和实验验证证明了这一点","authors":"Qingyang Liu, Jian Wang, Chunhui Ding, Ying Chu, Fengying Jiang, Yunxia Hu, Haifeng Li, Qiubo Wang","doi":"10.2147/dddt.s475959","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> Sinomenine (SIN) is commonly used in Traditional Chinese Medicine (TCM) as a respected remedy for rheumatoid arthritis (RA). Nevertheless, the therapeutic mechanism of SIN in RA remains incompletely understood. This study aimed to delve into the molecular mechanism of SIN in the treatment of RA.<br/><strong>Methods:</strong> The potential targets of SIN were predicted using the TCMSP server, STITCH database, and SwissTarget Prediction. Differentially expressed genes (DEGs) in RA were obtained from the GEO database. Enrichment analyses and molecular docking were conducted to explore the potential mechanism of SIN in the treatment of RA. In vitro and in vivo studies were conducted to validate the intervention effects of SIN on rheumatoid arthritis, as determined through network pharmacology analyses.<br/><strong>Results:</strong> A total of 39 potential targets associated with the therapeutic effects of SIN in RA were identified. Enrichment analysis revealed that these potential targets are primarily enriched in PI3K-Akt signaling pathway, and the molecular docking suggests that SIN may act on specific proteins in the pathway. Experimental results have shown that exposure to SIN inhibits cytokine secretion, promotes apoptosis, reduces metastasis and invasion, and blocks the activation of the PI3K-Akt signaling pathway in RA fibroblast-like synoviocytes (RA-FLS). Moreover, SIN treatment alleviated arthritis-related symptoms and regulated the differentiation of CD4+ T cells in the spleen of collagen-induced arthritis (CIA) mice.<br/><strong>Conclusion:</strong> By utilizing network pharmacology, molecular modeling, and in vitro/in vivo validation, this study demonstrates that SIN can alleviate RA by inhibiting the PI3K-Akt signaling pathway. These findings enhance the understanding of the therapeutic mechanisms of SIN in RA, offering a stronger theoretical foundation for its future clinical application. <br/><br/><strong>Keywords:</strong> sinomenine, rheumatoid arthritis, network pharmacology, PI3K-Akt signaling pathway<br/>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sinomenine Alleviates Rheumatoid Arthritis by Suppressing the PI3K-Akt Signaling Pathway, as Demonstrated Through Network Pharmacology, Molecular Docking, and Experimental Validation\",\"authors\":\"Qingyang Liu, Jian Wang, Chunhui Ding, Ying Chu, Fengying Jiang, Yunxia Hu, Haifeng Li, Qiubo Wang\",\"doi\":\"10.2147/dddt.s475959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Purpose:</strong> Sinomenine (SIN) is commonly used in Traditional Chinese Medicine (TCM) as a respected remedy for rheumatoid arthritis (RA). Nevertheless, the therapeutic mechanism of SIN in RA remains incompletely understood. This study aimed to delve into the molecular mechanism of SIN in the treatment of RA.<br/><strong>Methods:</strong> The potential targets of SIN were predicted using the TCMSP server, STITCH database, and SwissTarget Prediction. Differentially expressed genes (DEGs) in RA were obtained from the GEO database. Enrichment analyses and molecular docking were conducted to explore the potential mechanism of SIN in the treatment of RA. In vitro and in vivo studies were conducted to validate the intervention effects of SIN on rheumatoid arthritis, as determined through network pharmacology analyses.<br/><strong>Results:</strong> A total of 39 potential targets associated with the therapeutic effects of SIN in RA were identified. Enrichment analysis revealed that these potential targets are primarily enriched in PI3K-Akt signaling pathway, and the molecular docking suggests that SIN may act on specific proteins in the pathway. Experimental results have shown that exposure to SIN inhibits cytokine secretion, promotes apoptosis, reduces metastasis and invasion, and blocks the activation of the PI3K-Akt signaling pathway in RA fibroblast-like synoviocytes (RA-FLS). Moreover, SIN treatment alleviated arthritis-related symptoms and regulated the differentiation of CD4+ T cells in the spleen of collagen-induced arthritis (CIA) mice.<br/><strong>Conclusion:</strong> By utilizing network pharmacology, molecular modeling, and in vitro/in vivo validation, this study demonstrates that SIN can alleviate RA by inhibiting the PI3K-Akt signaling pathway. These findings enhance the understanding of the therapeutic mechanisms of SIN in RA, offering a stronger theoretical foundation for its future clinical application. <br/><br/><strong>Keywords:</strong> sinomenine, rheumatoid arthritis, network pharmacology, PI3K-Akt signaling pathway<br/>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/dddt.s475959\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/dddt.s475959","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:西诺明(SIN)是中医常用的治疗类风湿性关节炎(RA)的药物。然而,SIN 对 RA 的治疗机制仍不完全清楚。本研究旨在探讨 SIN 治疗 RA 的分子机制:方法:使用 TCMSP 服务器、STITCH 数据库和 SwissTarget Prediction 预测 SIN 的潜在靶点。方法:利用 TCMSP 服务器、STITCH 数据库和 SwissTarget Prediction 预测 SIN 的潜在靶点。进行了富集分析和分子对接,以探索 SIN 治疗 RA 的潜在机制。通过网络药理学分析,进行了体外和体内研究,以验证 SIN 对类风湿性关节炎的干预效果:结果:共发现了 39 个与 SIN 对类风湿关节炎的治疗效果相关的潜在靶点。富集分析表明,这些潜在靶点主要富集在PI3K-Akt信号通路中,分子对接表明SIN可能作用于该通路中的特定蛋白。实验结果表明,暴露于SIN可抑制细胞因子分泌、促进细胞凋亡、减少转移和侵袭,并阻断PI3K-Akt信号通路在RA成纤维细胞样滑膜细胞(RA-FLS)中的激活。此外,SIN治疗可减轻关节炎相关症状,并调节胶原诱导的关节炎(CIA)小鼠脾脏中CD4+ T细胞的分化:通过利用网络药理学、分子建模和体外/体内验证,本研究证明了SIN可以通过抑制PI3K-Akt信号通路来缓解RA。这些发现加深了人们对SIN在RA中治疗机制的理解,为其未来的临床应用提供了更坚实的理论基础。关键词:西诺明;类风湿性关节炎;网络药理学;PI3K-Akt 信号通路
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sinomenine Alleviates Rheumatoid Arthritis by Suppressing the PI3K-Akt Signaling Pathway, as Demonstrated Through Network Pharmacology, Molecular Docking, and Experimental Validation
Purpose: Sinomenine (SIN) is commonly used in Traditional Chinese Medicine (TCM) as a respected remedy for rheumatoid arthritis (RA). Nevertheless, the therapeutic mechanism of SIN in RA remains incompletely understood. This study aimed to delve into the molecular mechanism of SIN in the treatment of RA.
Methods: The potential targets of SIN were predicted using the TCMSP server, STITCH database, and SwissTarget Prediction. Differentially expressed genes (DEGs) in RA were obtained from the GEO database. Enrichment analyses and molecular docking were conducted to explore the potential mechanism of SIN in the treatment of RA. In vitro and in vivo studies were conducted to validate the intervention effects of SIN on rheumatoid arthritis, as determined through network pharmacology analyses.
Results: A total of 39 potential targets associated with the therapeutic effects of SIN in RA were identified. Enrichment analysis revealed that these potential targets are primarily enriched in PI3K-Akt signaling pathway, and the molecular docking suggests that SIN may act on specific proteins in the pathway. Experimental results have shown that exposure to SIN inhibits cytokine secretion, promotes apoptosis, reduces metastasis and invasion, and blocks the activation of the PI3K-Akt signaling pathway in RA fibroblast-like synoviocytes (RA-FLS). Moreover, SIN treatment alleviated arthritis-related symptoms and regulated the differentiation of CD4+ T cells in the spleen of collagen-induced arthritis (CIA) mice.
Conclusion: By utilizing network pharmacology, molecular modeling, and in vitro/in vivo validation, this study demonstrates that SIN can alleviate RA by inhibiting the PI3K-Akt signaling pathway. These findings enhance the understanding of the therapeutic mechanisms of SIN in RA, offering a stronger theoretical foundation for its future clinical application.

Keywords: sinomenine, rheumatoid arthritis, network pharmacology, PI3K-Akt signaling pathway
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Comparison of Remimazolam and Propofol in Recovery of Elderly Outpatients Undergoing Gastrointestinal Endoscopy: A Randomized, Non-Inferiority Trial. Dauricine: Review of Pharmacological Activity. Copolymerized Polymers Based on Cyclodextrins and Cationic Groups Enhance Therapeutic Effect of Rebamipide in the N-Acetylcysteine-Treated Dry Eye Model. Deciphering the Dynamics of EGFR-TKI Resistance in Lung Cancer: Insights from Bibliometric Analysis. Follitropin Alpha versus Follitropin Beta in IVF/ICSI Cycle: A Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1