Ahmed A. Ewees, Marwa A. Gaheen, Mohammed M. Alshahrani, Ahmed M. Anter, Fatma H. Ismail
{"title":"用于减少特征的改进型机器学习技术及其在垃圾邮件检测中的应用","authors":"Ahmed A. Ewees, Marwa A. Gaheen, Mohammed M. Alshahrani, Ahmed M. Anter, Fatma H. Ismail","doi":"10.1007/s10844-024-00870-z","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces MPAG, a new feature selection method aimed at overcoming the limitations of the conventional Marine Predators Algorithm (MPA). The MPA may experience stagnation and become trapped in local optima during optimization. To address this challenge, we propose a refined version of the MPA, termed MPAG, which incorporates the Local Escape Operator (LEO) from the gradient-based optimizer (GBO). By leveraging the LEO operator, MPAG enhances the exploration ability of the MPA, particularly during the initial one-third of iterations. This enhancement injects more diversity into populations, thereby improving the process of search space discovery and mitigating the risk of premature convergence. The performance of MPAG is evaluated on 14 feature selection benchmark datasets, employing seven performance measures including fitness value, classification accuracy, and selected features. Our findings indicate that MPAG outperforms other algorithms in 86% of the datasets, underscoring its capability to select the most relevant features across various datasets while maintaining stability. Additionally, MPAG is evaluated using two cybersecurity applications, specifically spam detection datasets, where it demonstrates superior performance across most performance measures compared to other methods.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"77 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved machine learning technique for feature reduction and its application in spam email detection\",\"authors\":\"Ahmed A. Ewees, Marwa A. Gaheen, Mohammed M. Alshahrani, Ahmed M. Anter, Fatma H. Ismail\",\"doi\":\"10.1007/s10844-024-00870-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces MPAG, a new feature selection method aimed at overcoming the limitations of the conventional Marine Predators Algorithm (MPA). The MPA may experience stagnation and become trapped in local optima during optimization. To address this challenge, we propose a refined version of the MPA, termed MPAG, which incorporates the Local Escape Operator (LEO) from the gradient-based optimizer (GBO). By leveraging the LEO operator, MPAG enhances the exploration ability of the MPA, particularly during the initial one-third of iterations. This enhancement injects more diversity into populations, thereby improving the process of search space discovery and mitigating the risk of premature convergence. The performance of MPAG is evaluated on 14 feature selection benchmark datasets, employing seven performance measures including fitness value, classification accuracy, and selected features. Our findings indicate that MPAG outperforms other algorithms in 86% of the datasets, underscoring its capability to select the most relevant features across various datasets while maintaining stability. Additionally, MPAG is evaluated using two cybersecurity applications, specifically spam detection datasets, where it demonstrates superior performance across most performance measures compared to other methods.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-024-00870-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00870-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved machine learning technique for feature reduction and its application in spam email detection
This paper introduces MPAG, a new feature selection method aimed at overcoming the limitations of the conventional Marine Predators Algorithm (MPA). The MPA may experience stagnation and become trapped in local optima during optimization. To address this challenge, we propose a refined version of the MPA, termed MPAG, which incorporates the Local Escape Operator (LEO) from the gradient-based optimizer (GBO). By leveraging the LEO operator, MPAG enhances the exploration ability of the MPA, particularly during the initial one-third of iterations. This enhancement injects more diversity into populations, thereby improving the process of search space discovery and mitigating the risk of premature convergence. The performance of MPAG is evaluated on 14 feature selection benchmark datasets, employing seven performance measures including fitness value, classification accuracy, and selected features. Our findings indicate that MPAG outperforms other algorithms in 86% of the datasets, underscoring its capability to select the most relevant features across various datasets while maintaining stability. Additionally, MPAG is evaluated using two cybersecurity applications, specifically spam detection datasets, where it demonstrates superior performance across most performance measures compared to other methods.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.