利用新型稀疏性指数驱动的山羚优化器进行最佳滤波器设计及其在故障诊断中的应用

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS Applied Acoustics Pub Date : 2024-07-30 DOI:10.1016/j.apacoust.2024.110200
{"title":"利用新型稀疏性指数驱动的山羚优化器进行最佳滤波器设计及其在故障诊断中的应用","authors":"","doi":"10.1016/j.apacoust.2024.110200","DOIUrl":null,"url":null,"abstract":"<div><p>The informative frequency band (IFB) plays a vital role in detecting defects in complex machinery through visible informative features. In the present work, a denoising filter has been designed to enhance the small non-stationarities present in the signal. Initially, the system impulse is computed to estimate the filter coefficients which are further optimized by the mountain gazelle optimization (MGO) based on the maximum value fitness function. The novel sparsity index based on kurtosis and negentropy (NE) is put forward as the fitness function. Then, optimized coefficients are convolved with the system impulse to design the denoising filter. The efficacy of the designed filter is verified through vibration and acoustic signals from the defective components of the belt conveyor system. The designed filter is better able to extract the impulsiveness from the signal, give improved values of kurtosis and signal-to-noise ratio (SNR), and reduce interferences from other machinery components and the environment simultaneously.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal filter design using mountain gazelle optimizer driven by novel sparsity index and its application to fault diagnosis\",\"authors\":\"\",\"doi\":\"10.1016/j.apacoust.2024.110200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The informative frequency band (IFB) plays a vital role in detecting defects in complex machinery through visible informative features. In the present work, a denoising filter has been designed to enhance the small non-stationarities present in the signal. Initially, the system impulse is computed to estimate the filter coefficients which are further optimized by the mountain gazelle optimization (MGO) based on the maximum value fitness function. The novel sparsity index based on kurtosis and negentropy (NE) is put forward as the fitness function. Then, optimized coefficients are convolved with the system impulse to design the denoising filter. The efficacy of the designed filter is verified through vibration and acoustic signals from the defective components of the belt conveyor system. The designed filter is better able to extract the impulsiveness from the signal, give improved values of kurtosis and signal-to-noise ratio (SNR), and reduce interferences from other machinery components and the environment simultaneously.</p></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24003517\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24003517","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

信息频段(IFB)在通过可见信息特征检测复杂机械缺陷方面发挥着重要作用。在本研究中,设计了一种去噪滤波器来增强信号中存在的微小非平稳性。首先,通过计算系统脉冲来估计滤波器系数,然后根据最大值适配函数通过山羚优化(MGO)对滤波器系数进行进一步优化。提出了基于峰度和负熵(NE)的新稀疏性指数作为适配函数。然后,将优化后的系数与系统脉冲卷积,设计出去噪滤波器。所设计滤波器的功效通过皮带输送机系统缺陷部件的振动和声学信号得到了验证。所设计的滤波器能更好地提取信号中的脉冲,改善峰度值和信噪比(SNR),并同时减少来自其他机械部件和环境的干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal filter design using mountain gazelle optimizer driven by novel sparsity index and its application to fault diagnosis

The informative frequency band (IFB) plays a vital role in detecting defects in complex machinery through visible informative features. In the present work, a denoising filter has been designed to enhance the small non-stationarities present in the signal. Initially, the system impulse is computed to estimate the filter coefficients which are further optimized by the mountain gazelle optimization (MGO) based on the maximum value fitness function. The novel sparsity index based on kurtosis and negentropy (NE) is put forward as the fitness function. Then, optimized coefficients are convolved with the system impulse to design the denoising filter. The efficacy of the designed filter is verified through vibration and acoustic signals from the defective components of the belt conveyor system. The designed filter is better able to extract the impulsiveness from the signal, give improved values of kurtosis and signal-to-noise ratio (SNR), and reduce interferences from other machinery components and the environment simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
期刊最新文献
Motion coprime array-based DOA estimation considering phase disturbance of sensor array Prediction of flanking sound transmission through cross-laminated timber junctions with resilient interlayers TPat: Transition pattern feature extraction based Parkinson’s disorder detection using FNIRS signals Voice handicap prevalence among healthcare workers in China and Indonesia Acoustic metaslit for regional sound insulation for a three-dimensional diffuse sound field incidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1