Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh
{"title":"关于矩阵的相关性差距","authors":"Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh","doi":"10.1007/s10107-024-02116-w","DOIUrl":null,"url":null,"abstract":"<p>A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least <span>\\(1-1/e\\)</span>, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the correlation gap of matroids\",\"authors\":\"Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh\",\"doi\":\"10.1007/s10107-024-02116-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least <span>\\\\(1-1/e\\\\)</span>, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02116-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02116-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least \(1-1/e\), and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.