{"title":"具有作业系列、脱模时间和模具可用性约束的并行机调度:模型和两种解决方法","authors":"Xiang Lin, Yuning Chen, Junhua Xue, Boquan Zhang, Yingwu Chen, Cheng Chen","doi":"10.1007/s12293-024-00421-7","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates a new problem in an identical parallel machine environment called parallel machine scheduling with job family, release time, and mold availability constraints (PMS-JRM), which is highly challenging from the computational perspective as it extends the basic NP-hard problem <span>\\(P_m||\\sum C_j\\)</span>. The mold availability notion, first introduced in this paper, represents the availability relationship between jobs and machines. The PMS-JRM model originates from the imaging data collaborative processing in a low-earth-orbit satellite constellation under a time-varying communication network, and it can represent other multi-resource collaborative scheduling problems with discontinuous communication. An integer programming model was proposed to formulate the PMS-JRM. Due to its NP-hardness, two highly efficient heuristic solution approaches were proposed, namely a greedy algorithm with a hybrid first come first serve (HFCFS) dispatching rule (GA-HFCFS) and a Memetic Algorithm with Heterogeneous swap and Key job insertion operators (MA-HK). Extensive experiments were conducted on a set of test cases with various scales, and the results showed that GA-HFCFS outperforms three classical dispatching rules available in the literature. Taking the results of GA-HFCFS as initial solutions, MA-HK achieves optimal solutions for all small-scale cases while providing superior solutions within the same running time compared to two other competitors for large-scale cases. In particular, MA-HK yields better solutions in less running time than the state-of-the-art CPLEX solver. Additional experiments were conducted to highlight the critical ingredients of MA-HK.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel machine scheduling with job family, release time, and mold availability constraints: model and two solution approaches\",\"authors\":\"Xiang Lin, Yuning Chen, Junhua Xue, Boquan Zhang, Yingwu Chen, Cheng Chen\",\"doi\":\"10.1007/s12293-024-00421-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates a new problem in an identical parallel machine environment called parallel machine scheduling with job family, release time, and mold availability constraints (PMS-JRM), which is highly challenging from the computational perspective as it extends the basic NP-hard problem <span>\\\\(P_m||\\\\sum C_j\\\\)</span>. The mold availability notion, first introduced in this paper, represents the availability relationship between jobs and machines. The PMS-JRM model originates from the imaging data collaborative processing in a low-earth-orbit satellite constellation under a time-varying communication network, and it can represent other multi-resource collaborative scheduling problems with discontinuous communication. An integer programming model was proposed to formulate the PMS-JRM. Due to its NP-hardness, two highly efficient heuristic solution approaches were proposed, namely a greedy algorithm with a hybrid first come first serve (HFCFS) dispatching rule (GA-HFCFS) and a Memetic Algorithm with Heterogeneous swap and Key job insertion operators (MA-HK). Extensive experiments were conducted on a set of test cases with various scales, and the results showed that GA-HFCFS outperforms three classical dispatching rules available in the literature. Taking the results of GA-HFCFS as initial solutions, MA-HK achieves optimal solutions for all small-scale cases while providing superior solutions within the same running time compared to two other competitors for large-scale cases. In particular, MA-HK yields better solutions in less running time than the state-of-the-art CPLEX solver. Additional experiments were conducted to highlight the critical ingredients of MA-HK.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00421-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00421-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Parallel machine scheduling with job family, release time, and mold availability constraints: model and two solution approaches
This paper investigates a new problem in an identical parallel machine environment called parallel machine scheduling with job family, release time, and mold availability constraints (PMS-JRM), which is highly challenging from the computational perspective as it extends the basic NP-hard problem \(P_m||\sum C_j\). The mold availability notion, first introduced in this paper, represents the availability relationship between jobs and machines. The PMS-JRM model originates from the imaging data collaborative processing in a low-earth-orbit satellite constellation under a time-varying communication network, and it can represent other multi-resource collaborative scheduling problems with discontinuous communication. An integer programming model was proposed to formulate the PMS-JRM. Due to its NP-hardness, two highly efficient heuristic solution approaches were proposed, namely a greedy algorithm with a hybrid first come first serve (HFCFS) dispatching rule (GA-HFCFS) and a Memetic Algorithm with Heterogeneous swap and Key job insertion operators (MA-HK). Extensive experiments were conducted on a set of test cases with various scales, and the results showed that GA-HFCFS outperforms three classical dispatching rules available in the literature. Taking the results of GA-HFCFS as initial solutions, MA-HK achieves optimal solutions for all small-scale cases while providing superior solutions within the same running time compared to two other competitors for large-scale cases. In particular, MA-HK yields better solutions in less running time than the state-of-the-art CPLEX solver. Additional experiments were conducted to highlight the critical ingredients of MA-HK.