利用激光烧蚀电感耦合等离子体质谱元素图谱分析中国太行山汉兴型矽卡岩铁矿床黄铁矿中钴的赋存特征及富集机理

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geological Journal Pub Date : 2024-08-05 DOI:10.1002/gj.5034
Chao Qin, Ju-Quan Zhang, Masroor Alam, Yu-Ying Tang, Ming Bai, Li-Shuai Dong, Fang-Yue Wang, Xian Liang, Jing Lu
{"title":"利用激光烧蚀电感耦合等离子体质谱元素图谱分析中国太行山汉兴型矽卡岩铁矿床黄铁矿中钴的赋存特征及富集机理","authors":"Chao Qin,&nbsp;Ju-Quan Zhang,&nbsp;Masroor Alam,&nbsp;Yu-Ying Tang,&nbsp;Ming Bai,&nbsp;Li-Shuai Dong,&nbsp;Fang-Yue Wang,&nbsp;Xian Liang,&nbsp;Jing Lu","doi":"10.1002/gj.5034","DOIUrl":null,"url":null,"abstract":"<p>Cobalt is a critical and strategic metal mainly found as associated element in several types of deposits, of which skarn-type deposits are the major sources. Han-Xing type skarn iron deposit, having high grade iron ore and associated cobalt, is a typical skarn-type iron ore in China. But the complete recovery and exploitation of cobalt are restricted because of the lower grade of related cobalt and the dearth of prior research on its occurrence condition and enrichment mechanism. In this paper, pyrite from five typical ore deposits in the Han-Xing area was studied by using electron probe microanalysis (EPMA) and laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) techniques to decipher the occurrence state and enrichment mechanism of associated cobalt in skarn-type iron deposits. The results show that Co<sup>2+</sup> replaces Fe<sup>2+</sup> in pyrite through isomorphism. The distribution of cobalt in pyrite from different deposits varies greatly, that is, in the Xishimen iron deposit, the cobalt content is comparatively enriched in the pyrite's core. In contrast, in other deposits, the cobalt content is concentrated in the pyrite's rims, where it can be up to 1000 times higher than in the core. The cobalt mineralization in Han-Xing area can be divided into several stages. The sulphur element of sulphide is mainly derived from evaporite, while cobalt mineralization occurred in the early stage with pyrite formation or in the late stage by metasomatism/cementation of Co-rich ore-forming fluid. The magma assimilated with the Ordovician evaporite not only promoted iron mineralization, but also became the main controlling factor for cobalt enrichment.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2860-2882"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence characteristics and enrichment mechanism of cobalt in pyrite from the Han-Xing type skarn iron deposit using laser-ablation inductively-coupled-plasma mass-spectrometry elemental mapping, Taihang Mountain, China\",\"authors\":\"Chao Qin,&nbsp;Ju-Quan Zhang,&nbsp;Masroor Alam,&nbsp;Yu-Ying Tang,&nbsp;Ming Bai,&nbsp;Li-Shuai Dong,&nbsp;Fang-Yue Wang,&nbsp;Xian Liang,&nbsp;Jing Lu\",\"doi\":\"10.1002/gj.5034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cobalt is a critical and strategic metal mainly found as associated element in several types of deposits, of which skarn-type deposits are the major sources. Han-Xing type skarn iron deposit, having high grade iron ore and associated cobalt, is a typical skarn-type iron ore in China. But the complete recovery and exploitation of cobalt are restricted because of the lower grade of related cobalt and the dearth of prior research on its occurrence condition and enrichment mechanism. In this paper, pyrite from five typical ore deposits in the Han-Xing area was studied by using electron probe microanalysis (EPMA) and laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) techniques to decipher the occurrence state and enrichment mechanism of associated cobalt in skarn-type iron deposits. The results show that Co<sup>2+</sup> replaces Fe<sup>2+</sup> in pyrite through isomorphism. The distribution of cobalt in pyrite from different deposits varies greatly, that is, in the Xishimen iron deposit, the cobalt content is comparatively enriched in the pyrite's core. In contrast, in other deposits, the cobalt content is concentrated in the pyrite's rims, where it can be up to 1000 times higher than in the core. The cobalt mineralization in Han-Xing area can be divided into several stages. The sulphur element of sulphide is mainly derived from evaporite, while cobalt mineralization occurred in the early stage with pyrite formation or in the late stage by metasomatism/cementation of Co-rich ore-forming fluid. The magma assimilated with the Ordovician evaporite not only promoted iron mineralization, but also became the main controlling factor for cobalt enrichment.</p>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"59 10\",\"pages\":\"2860-2882\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5034\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5034","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钴是一种重要的战略金属,主要作为伴生元素存在于多种矿床中,其中矽卡岩型矿床是主要来源。邯邢型矽卡岩铁矿床具有高品位铁矿石和伴生钴,是中国典型的矽卡岩型铁矿。但由于伴生钴品位较低,且对其赋存条件和富集机理的研究较少,因此制约了钴的完全回收和开发利用。本文采用电子探针显微分析(EPMA)和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)技术,对邯邢地区五个典型矿床的黄铁矿进行了研究,以揭示矽卡岩型铁矿中伴生钴的赋存状态和富集机理。结果表明,Co2+ 通过同构作用取代了黄铁矿中的 Fe2+。不同矿床黄铁矿中钴的分布差异很大,即在西石门铁矿床中,钴含量相对富集在黄铁矿的核心部位。与此相反,在其他矿床中,钴含量集中在黄铁矿的边缘,其含量可比核心高出 1000 倍。汉兴地区的钴矿化可分为几个阶段。硫化物中的硫元素主要来源于蒸发岩,而钴矿化则发生在黄铁矿形成的早期阶段或富钴成矿流体的变质/沉积作用的晚期阶段。与奥陶纪蒸发岩同化的岩浆不仅促进了铁矿化,而且成为钴富集的主要控制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Occurrence characteristics and enrichment mechanism of cobalt in pyrite from the Han-Xing type skarn iron deposit using laser-ablation inductively-coupled-plasma mass-spectrometry elemental mapping, Taihang Mountain, China

Cobalt is a critical and strategic metal mainly found as associated element in several types of deposits, of which skarn-type deposits are the major sources. Han-Xing type skarn iron deposit, having high grade iron ore and associated cobalt, is a typical skarn-type iron ore in China. But the complete recovery and exploitation of cobalt are restricted because of the lower grade of related cobalt and the dearth of prior research on its occurrence condition and enrichment mechanism. In this paper, pyrite from five typical ore deposits in the Han-Xing area was studied by using electron probe microanalysis (EPMA) and laser-ablation inductively-coupled-plasma mass-spectrometry (LA–ICP–MS) techniques to decipher the occurrence state and enrichment mechanism of associated cobalt in skarn-type iron deposits. The results show that Co2+ replaces Fe2+ in pyrite through isomorphism. The distribution of cobalt in pyrite from different deposits varies greatly, that is, in the Xishimen iron deposit, the cobalt content is comparatively enriched in the pyrite's core. In contrast, in other deposits, the cobalt content is concentrated in the pyrite's rims, where it can be up to 1000 times higher than in the core. The cobalt mineralization in Han-Xing area can be divided into several stages. The sulphur element of sulphide is mainly derived from evaporite, while cobalt mineralization occurred in the early stage with pyrite formation or in the late stage by metasomatism/cementation of Co-rich ore-forming fluid. The magma assimilated with the Ordovician evaporite not only promoted iron mineralization, but also became the main controlling factor for cobalt enrichment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
期刊最新文献
Issue Information Issue Information Reply to Comment on “Singh R, Vadlamani R, Bajpai S & Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961” Fabrics and Origin of Troctolites in the Keketoukeleke Ultramafic–Mafic Complex, South Altyn Tagh, Northwest China Comment on “Singh R, Vadlamani R, Bajpai S, Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1