骨骼肌中的自噬作用

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-08-12 DOI:10.1101/cshperspect.a041565
Anais Franco-Romero, Marco Sandri, Stefano Schiaffino
{"title":"骨骼肌中的自噬作用","authors":"Anais Franco-Romero, Marco Sandri, Stefano Schiaffino","doi":"10.1101/cshperspect.a041565","DOIUrl":null,"url":null,"abstract":"Skeletal muscle fibers possess, like all cells of our body, an evolutionary conserved autophagy machinery, which allows them to segregate unfolded proteins and damaged organelles within autophagosomes, and to induce fusion of autophagosomes with lysosomes, leading to degradation of those altered cell constituents. This process may be selective for specific cell components, as in the case of glycogen (glycophagy) or organelles, as with mitochondria (mitophagy). The autophagic flux is activated by fasting, and contributes with the proteasome to provide the organism with amino acids required for survival. Autophagy is also essential for the normal turnover of muscle proteins and organelles, as shown by the degenerative changes induced by genetic block of the autophagic mechanism, and in several myopathies. Autophagy is enhanced in muscle by exercise and impaired during aging, suggesting that aging-dependent muscle dysfunction could be delayed by boosting autophagy.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"1 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autophagy in Skeletal Muscle\",\"authors\":\"Anais Franco-Romero, Marco Sandri, Stefano Schiaffino\",\"doi\":\"10.1101/cshperspect.a041565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletal muscle fibers possess, like all cells of our body, an evolutionary conserved autophagy machinery, which allows them to segregate unfolded proteins and damaged organelles within autophagosomes, and to induce fusion of autophagosomes with lysosomes, leading to degradation of those altered cell constituents. This process may be selective for specific cell components, as in the case of glycogen (glycophagy) or organelles, as with mitochondria (mitophagy). The autophagic flux is activated by fasting, and contributes with the proteasome to provide the organism with amino acids required for survival. Autophagy is also essential for the normal turnover of muscle proteins and organelles, as shown by the degenerative changes induced by genetic block of the autophagic mechanism, and in several myopathies. Autophagy is enhanced in muscle by exercise and impaired during aging, suggesting that aging-dependent muscle dysfunction could be delayed by boosting autophagy.\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041565\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041565","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌纤维与人体所有细胞一样,拥有进化保守的自噬机制,可将未折叠蛋白质和受损细胞器分离到自噬体中,并诱导自噬体与溶酶体融合,从而降解这些发生变化的细胞成分。这一过程可能对特定的细胞成分具有选择性,如糖原(糖吞噬)或细胞器,如线粒体(线粒体吞噬)。禁食会激活自噬通量,并与蛋白酶体一起为生物体提供生存所需的氨基酸。自噬对于肌肉蛋白质和细胞器的正常周转也是必不可少的,自噬机制的基因阻断所诱发的退行性变化以及多种肌病都证明了这一点。肌肉中的自噬功能在运动时会增强,而在衰老过程中则会减弱,这表明通过增强自噬功能可以延缓依赖衰老的肌肉功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autophagy in Skeletal Muscle
Skeletal muscle fibers possess, like all cells of our body, an evolutionary conserved autophagy machinery, which allows them to segregate unfolded proteins and damaged organelles within autophagosomes, and to induce fusion of autophagosomes with lysosomes, leading to degradation of those altered cell constituents. This process may be selective for specific cell components, as in the case of glycogen (glycophagy) or organelles, as with mitochondria (mitophagy). The autophagic flux is activated by fasting, and contributes with the proteasome to provide the organism with amino acids required for survival. Autophagy is also essential for the normal turnover of muscle proteins and organelles, as shown by the degenerative changes induced by genetic block of the autophagic mechanism, and in several myopathies. Autophagy is enhanced in muscle by exercise and impaired during aging, suggesting that aging-dependent muscle dysfunction could be delayed by boosting autophagy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Epigenetics of Human Telomeres. In the Loop: Unusual DNA Structures at Telomeric Repeats and Their Impact on Telomere Function. Proteins of the Triadic Excitation-Contraction Coupling Complex in Skeletal Muscle. Telomeres and Human Disease. Telomeric Repeat-Containing RNA: Biogenesis, Regulation, and Functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1