{"title":"基于深度过参数化递归残差卷积的视频帧插值技术","authors":"Xiaohui Yang, Weijing Liu, Shaowen Wang","doi":"10.1117/1.jei.33.4.043036","DOIUrl":null,"url":null,"abstract":"To effectively address the challenges of large motions, complex backgrounds and large occlusions in videos, we introduce an end-to-end method for video frame interpolation based on recurrent residual convolution and depthwise over-parameterized convolution in this paper. Specifically, we devise a U-Net architecture utilizing recurrent residual convolution to enhance the quality of interpolated frame. First, the recurrent residual U-Net feature extractor is employed to extract features from input frames, yielding the kernel for each pixel. Subsequently, an adaptive collaboration of flows is utilized to warp the input frames, which are then fed into the frame synthesis network to generate initial interpolated frames. Finally, the proposed network incorporates depthwise over-parameterized convolution to further enhance the quality of interpolated frame. Experimental results on various datasets demonstrate the superiority of our method over state-of-the-art techniques in both objective and subjective evaluations.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video frame interpolation based on depthwise over-parameterized recurrent residual convolution\",\"authors\":\"Xiaohui Yang, Weijing Liu, Shaowen Wang\",\"doi\":\"10.1117/1.jei.33.4.043036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To effectively address the challenges of large motions, complex backgrounds and large occlusions in videos, we introduce an end-to-end method for video frame interpolation based on recurrent residual convolution and depthwise over-parameterized convolution in this paper. Specifically, we devise a U-Net architecture utilizing recurrent residual convolution to enhance the quality of interpolated frame. First, the recurrent residual U-Net feature extractor is employed to extract features from input frames, yielding the kernel for each pixel. Subsequently, an adaptive collaboration of flows is utilized to warp the input frames, which are then fed into the frame synthesis network to generate initial interpolated frames. Finally, the proposed network incorporates depthwise over-parameterized convolution to further enhance the quality of interpolated frame. Experimental results on various datasets demonstrate the superiority of our method over state-of-the-art techniques in both objective and subjective evaluations.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Video frame interpolation based on depthwise over-parameterized recurrent residual convolution
To effectively address the challenges of large motions, complex backgrounds and large occlusions in videos, we introduce an end-to-end method for video frame interpolation based on recurrent residual convolution and depthwise over-parameterized convolution in this paper. Specifically, we devise a U-Net architecture utilizing recurrent residual convolution to enhance the quality of interpolated frame. First, the recurrent residual U-Net feature extractor is employed to extract features from input frames, yielding the kernel for each pixel. Subsequently, an adaptive collaboration of flows is utilized to warp the input frames, which are then fed into the frame synthesis network to generate initial interpolated frames. Finally, the proposed network incorporates depthwise over-parameterized convolution to further enhance the quality of interpolated frame. Experimental results on various datasets demonstrate the superiority of our method over state-of-the-art techniques in both objective and subjective evaluations.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.