与透水混凝土主要设计参数相关的性能分析:严格审查

Daniel Niruban Subramaniam, Arulanantham Anburuvel
{"title":"与透水混凝土主要设计参数相关的性能分析:严格审查","authors":"Daniel Niruban Subramaniam, Arulanantham Anburuvel","doi":"10.1177/03611981241265851","DOIUrl":null,"url":null,"abstract":"Pervious concrete (PC) is a structural element with environmental benefits. The industrial application is highly limited by restrictions in predicting performance owing to high uncertainties and issues in mass-producing with uniform characteristics. Primary performance indicators of PC are compressive strength, porosity, and permeability, where the porosity distribution and pore characteristics are crucial in its mechanical properties. Although compaction can improve uniformity in the properties of concrete, it is properly employed in PCs to ensure connectivity between pores and thereby enhance permeability. The compactability of fresh concrete predominantly depends on binder thickness dictated by aggregate-to-binder (A/B) ratio, water-to-binder (W/B) ratio, aggregate size, shape distribution of aggregates, and interfacial transition zone. In addition, the method of compaction, the compaction energy, and the distribution of compaction energy in the concrete matrix affect the above. The concrete compaction methods and their effectiveness vary between laboratory studies and field-scale installations. This state-of-the-art critical review of literature reviews the performance parameters of PC, compaction types and methods, compactability of PC, and models currently employed to optimize the mix design. It also highlights the potential trends for future studies to assist optimization of compaction in PC. The authors believe that this comprehensive review would assist professionals in developing a standard code of practice for using PC concrete.","PeriodicalId":517391,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis Relevant to Primary Design Parameters of Pervious Concrete: A Critical Review\",\"authors\":\"Daniel Niruban Subramaniam, Arulanantham Anburuvel\",\"doi\":\"10.1177/03611981241265851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervious concrete (PC) is a structural element with environmental benefits. The industrial application is highly limited by restrictions in predicting performance owing to high uncertainties and issues in mass-producing with uniform characteristics. Primary performance indicators of PC are compressive strength, porosity, and permeability, where the porosity distribution and pore characteristics are crucial in its mechanical properties. Although compaction can improve uniformity in the properties of concrete, it is properly employed in PCs to ensure connectivity between pores and thereby enhance permeability. The compactability of fresh concrete predominantly depends on binder thickness dictated by aggregate-to-binder (A/B) ratio, water-to-binder (W/B) ratio, aggregate size, shape distribution of aggregates, and interfacial transition zone. In addition, the method of compaction, the compaction energy, and the distribution of compaction energy in the concrete matrix affect the above. The concrete compaction methods and their effectiveness vary between laboratory studies and field-scale installations. This state-of-the-art critical review of literature reviews the performance parameters of PC, compaction types and methods, compactability of PC, and models currently employed to optimize the mix design. It also highlights the potential trends for future studies to assist optimization of compaction in PC. The authors believe that this comprehensive review would assist professionals in developing a standard code of practice for using PC concrete.\",\"PeriodicalId\":517391,\"journal\":{\"name\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981241265851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241265851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

透水混凝土(PC)是一种具有环境效益的结构元素。由于性能预测存在很大的不确定性,而且在大规模生产具有统一特性的产品时也存在问题,因此其工业应用受到很大限制。PC 的主要性能指标是抗压强度、孔隙率和渗透性,其中孔隙率分布和孔隙特征对其机械性能至关重要。虽然压实可以提高混凝土性能的均匀性,但在 PC 中适当使用压实可以确保孔隙之间的连通性,从而提高渗透性。新拌混凝土的压实度主要取决于粘结剂厚度,而粘结剂厚度又取决于骨料与粘结剂(A/B)比、水与粘结剂(W/B)比、骨料粒度、骨料形状分布和界面过渡区。此外,压实方法、压实能量以及压实能量在混凝土基体中的分布也会影响上述因素。无论是实验室研究还是现场安装,混凝土压实方法及其效果都不尽相同。这篇最新的文献评论回顾了 PC 的性能参数、压实类型和方法、PC 的密实性以及目前用于优化混合设计的模型。它还强调了未来研究的潜在趋势,以帮助优化 PC 的压实效果。作者认为,这篇全面的综述将有助于专业人士制定使用 PC 混凝土的标准操作规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis Relevant to Primary Design Parameters of Pervious Concrete: A Critical Review
Pervious concrete (PC) is a structural element with environmental benefits. The industrial application is highly limited by restrictions in predicting performance owing to high uncertainties and issues in mass-producing with uniform characteristics. Primary performance indicators of PC are compressive strength, porosity, and permeability, where the porosity distribution and pore characteristics are crucial in its mechanical properties. Although compaction can improve uniformity in the properties of concrete, it is properly employed in PCs to ensure connectivity between pores and thereby enhance permeability. The compactability of fresh concrete predominantly depends on binder thickness dictated by aggregate-to-binder (A/B) ratio, water-to-binder (W/B) ratio, aggregate size, shape distribution of aggregates, and interfacial transition zone. In addition, the method of compaction, the compaction energy, and the distribution of compaction energy in the concrete matrix affect the above. The concrete compaction methods and their effectiveness vary between laboratory studies and field-scale installations. This state-of-the-art critical review of literature reviews the performance parameters of PC, compaction types and methods, compactability of PC, and models currently employed to optimize the mix design. It also highlights the potential trends for future studies to assist optimization of compaction in PC. The authors believe that this comprehensive review would assist professionals in developing a standard code of practice for using PC concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Clustering Based Homogeneous Road Segments in Asphalt Pavement Maintenance and Rehabilitation Optimized Decision-Making Exploring the Relationship Between COVID-19 Transmission and Population Mobility over Time CTAFFNet: CNN–Transformer Adaptive Feature Fusion Object Detection Algorithm for Complex Traffic Scenarios Eye Movement Evaluation of Pedestrians' Mobile Phone Usage at Street Crossings Impact of Texting-Induced Distraction on Driving Behavior Based on Field Operation Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1