SPN-ARR 界面上的 N52R 突变对 SHANK3 构象动力学的影响

IF 0.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Current Proteomics Pub Date : 2024-08-07 DOI:10.2174/0115701646301703240730054408
Hiba K. Almaadani, Venkata Satish Kumar Mattaparthi
{"title":"SPN-ARR 界面上的 N52R 突变对 SHANK3 构象动力学的影响","authors":"Hiba K. Almaadani, Venkata Satish Kumar Mattaparthi","doi":"10.2174/0115701646301703240730054408","DOIUrl":null,"url":null,"abstract":"Background:: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain. Objective: This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT. Methods: Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure. Results: The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity. Conclusion: The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations in vivo.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"370 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of N52R Mutation at the SPN-ARR Interface on the Conformational Dynamics of SHANK3\",\"authors\":\"Hiba K. Almaadani, Venkata Satish Kumar Mattaparthi\",\"doi\":\"10.2174/0115701646301703240730054408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain. Objective: This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT. Methods: Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure. Results: The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity. Conclusion: The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations in vivo.\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"370 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701646301703240730054408\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646301703240730054408","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景::自闭症谱系障碍(ASD)是一种复杂的神经发育疾病。自闭症的遗传基础涉及神经通路的多个基因位点,尤其影响兴奋性突触。SHANK3是突触后神经元中的一种重要蛋白质,与ASD有牵连,突变影响其N端,包括SPN结构域。研究目的本研究旨在调查 N52R 突变对 SHANK3 的影响,并评估 N52R 突变体与 SHANK3 WT 相比的动态性、稳定性、灵活性和紧凑性。研究方法进行分子动力学模拟以研究 SHANK3 WT 和 N52R 突变体的结构动力学。模拟包括加热动力学、密度平衡和生产动力学。对轨迹进行了 RMSD、RMSF、Rg、氢键分析和二级结构分析。结果显示模拟结果显示,N52R突变体破坏了SHANK3的稳定性和折叠,影响了SPN和ARR之间的分子内接触。这种破坏拉开了SPN和ARR结构域之间的距离,可能会影响蛋白质与伙伴(包括αCaMKII和α-Fodrin)的相互作用。N52R 突变体中 SPN-ARR 串联构象的改变表明,它可能对树突棘形状和突触可塑性产生影响。结论这些发现揭示了 SHANK3 中 N52R 突变的结构性后果,强调了它在影响分子内相互作用中的作用以及对突触功能的潜在影响。了解这些分子动力学有助于揭示 SHANK3 基因变异与 ASD 相关临床特征之间错综复杂的关系。我们有必要开展进一步研究,探索这些结构改变在体内的生理影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of N52R Mutation at the SPN-ARR Interface on the Conformational Dynamics of SHANK3
Background:: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain. Objective: This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT. Methods: Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure. Results: The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity. Conclusion: The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations in vivo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Proteomics
Current Proteomics BIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍: Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry. Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to: Protein separation and characterization techniques 2-D gel electrophoresis and image analysis Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching Determination of co-translational and post- translational modification of proteins Protein/peptide microarrays Biomolecular interaction analysis Analysis of protein complexes Yeast two-hybrid projects Protein-protein interaction (protein interactome) pathways and cell signaling networks Systems biology Proteome informatics (bioinformatics) Knowledge integration and management tools High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography) High-throughput computational methods for protein 3-D structure as well as function determination Robotics, nanotechnology, and microfluidics.
期刊最新文献
Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition Molecular Docking, Pharmacophore Mapping, and Virtual Screening of Novel Glucokinase Activators as Antidiabetic Agents Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications miR-124 in Neuroblastoma: Mechanistic Insights, Biomarker Potential, and Therapeutic Prospects The Relationship of Transposable Elements with Non-Coding RNAs in the Emergence of Human Proteins and Peptides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1