马尔可夫二叉链算法

Alejandro Alarcón Gonzalez, Niel Hens, Tim Leys, Guillermo A. Pérez
{"title":"马尔可夫二叉链算法","authors":"Alejandro Alarcón Gonzalez, Niel Hens, Tim Leys, Guillermo A. Pérez","doi":"arxiv-2408.04902","DOIUrl":null,"url":null,"abstract":"We study algorithms to analyze a particular class of Markov population\nprocesses that is often used in epidemiology. More specifically, Markov\nbinomial chains are the model that arises from stochastic time-discretizations\nof classical compartmental models. In this work we formalize this class of\nMarkov population processes and focus on the problem of computing the expected\ntime to termination in a given such model. Our theoretical contributions\ninclude proving that Markov binomial chains whose flow of individuals through\ncompartments is acyclic almost surely terminate. We give a PSPACE algorithm for\nthe problem of approximating the time to termination and a direct algorithm for\nthe exact problem in the Blum-Shub-Smale model of computation. Finally, we\nprovide a natural encoding of Markov binomial chains into a common input\nlanguage for probabilistic model checkers. We implemented the latter encoding\nand present some initial empirical results showcasing what formal methods can\ndo for practicing epidemilogists.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for Markov Binomial Chains\",\"authors\":\"Alejandro Alarcón Gonzalez, Niel Hens, Tim Leys, Guillermo A. Pérez\",\"doi\":\"arxiv-2408.04902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algorithms to analyze a particular class of Markov population\\nprocesses that is often used in epidemiology. More specifically, Markov\\nbinomial chains are the model that arises from stochastic time-discretizations\\nof classical compartmental models. In this work we formalize this class of\\nMarkov population processes and focus on the problem of computing the expected\\ntime to termination in a given such model. Our theoretical contributions\\ninclude proving that Markov binomial chains whose flow of individuals through\\ncompartments is acyclic almost surely terminate. We give a PSPACE algorithm for\\nthe problem of approximating the time to termination and a direct algorithm for\\nthe exact problem in the Blum-Shub-Smale model of computation. Finally, we\\nprovide a natural encoding of Markov binomial chains into a common input\\nlanguage for probabilistic model checkers. We implemented the latter encoding\\nand present some initial empirical results showcasing what formal methods can\\ndo for practicing epidemilogists.\",\"PeriodicalId\":501208,\"journal\":{\"name\":\"arXiv - CS - Logic in Computer Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了分析流行病学中常用的一类马尔可夫种群过程的算法。更具体地说,马尔可夫二叉链是经典分区模型的随机时间离散化所产生的模型。在这项工作中,我们将这一类马尔可夫种群过程形式化,并重点研究在给定的此类模型中计算终止的预期时间问题。我们的理论贡献包括证明了个体流经分室的马尔可夫二叉链几乎肯定会终止。我们给出了近似终止时间问题的 PSPACE 算法,以及布卢姆-舒布-斯马尔计算模型中精确问题的直接算法。最后,我们将马尔可夫二叉链自然编码为概率模型检验器的通用输入语言。我们实现了后一种编码,并提出了一些初步的经验结果,展示了形式化方法对流行病学实践的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for Markov Binomial Chains
We study algorithms to analyze a particular class of Markov population processes that is often used in epidemiology. More specifically, Markov binomial chains are the model that arises from stochastic time-discretizations of classical compartmental models. In this work we formalize this class of Markov population processes and focus on the problem of computing the expected time to termination in a given such model. Our theoretical contributions include proving that Markov binomial chains whose flow of individuals through compartments is acyclic almost surely terminate. We give a PSPACE algorithm for the problem of approximating the time to termination and a direct algorithm for the exact problem in the Blum-Shub-Smale model of computation. Finally, we provide a natural encoding of Markov binomial chains into a common input language for probabilistic model checkers. We implemented the latter encoding and present some initial empirical results showcasing what formal methods can do for practicing epidemilogists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1