Yichao Yang, Chen Xu, Li Xie, Hongfeng Tao, Huizhong Yang
{"title":"具有未知测量损失和转换概率矩阵的马尔可夫跳跃线性系统的自适应状态估计","authors":"Yichao Yang, Chen Xu, Li Xie, Hongfeng Tao, Huizhong Yang","doi":"10.1016/j.jprocont.2024.103285","DOIUrl":null,"url":null,"abstract":"<div><p>State estimation for the Markov jump linear system (MJLS) is a intractable task when the unpredictable measurement loss exists. Although the conventional methods, such as interacting multiple-model method, are widely used in MJLS, their performance still depends on the known transition probability matrix (TPM). In this article, a novel adaptive state estimation method is proposed for MJLS with unknown measurement loss and TPM based on variational Bayesian inference. Specifically, under system state dynamic and measurement loss are independent, the system state, measurement loss probability and TPM are jointly inferred. In particular, when the stochastic measurement loss occurs, a selective learning mechanism is used to the updating of TPM. The efficiency and superiority of the proposed method is verified by a numerical example and a fermenter process compared with the existing methods.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"142 ","pages":"Article 103285"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive state estimation for Markov jump linear system with unknown measurement loss and transition probability matrix\",\"authors\":\"Yichao Yang, Chen Xu, Li Xie, Hongfeng Tao, Huizhong Yang\",\"doi\":\"10.1016/j.jprocont.2024.103285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>State estimation for the Markov jump linear system (MJLS) is a intractable task when the unpredictable measurement loss exists. Although the conventional methods, such as interacting multiple-model method, are widely used in MJLS, their performance still depends on the known transition probability matrix (TPM). In this article, a novel adaptive state estimation method is proposed for MJLS with unknown measurement loss and TPM based on variational Bayesian inference. Specifically, under system state dynamic and measurement loss are independent, the system state, measurement loss probability and TPM are jointly inferred. In particular, when the stochastic measurement loss occurs, a selective learning mechanism is used to the updating of TPM. The efficiency and superiority of the proposed method is verified by a numerical example and a fermenter process compared with the existing methods.</p></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"142 \",\"pages\":\"Article 103285\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424001252\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001252","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive state estimation for Markov jump linear system with unknown measurement loss and transition probability matrix
State estimation for the Markov jump linear system (MJLS) is a intractable task when the unpredictable measurement loss exists. Although the conventional methods, such as interacting multiple-model method, are widely used in MJLS, their performance still depends on the known transition probability matrix (TPM). In this article, a novel adaptive state estimation method is proposed for MJLS with unknown measurement loss and TPM based on variational Bayesian inference. Specifically, under system state dynamic and measurement loss are independent, the system state, measurement loss probability and TPM are jointly inferred. In particular, when the stochastic measurement loss occurs, a selective learning mechanism is used to the updating of TPM. The efficiency and superiority of the proposed method is verified by a numerical example and a fermenter process compared with the existing methods.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.