Yuchen Fan, Yaqi Yuan, Tao Li, Wen Lin, Xiwang Tang, Gaimei Liang, Nana Li
{"title":"秸秆还田秋耕对东部黄土高原玉米田土壤物理特征的影响","authors":"Yuchen Fan, Yaqi Yuan, Tao Li, Wen Lin, Xiwang Tang, Gaimei Liang, Nana Li","doi":"10.3389/fenvs.2024.1362616","DOIUrl":null,"url":null,"abstract":"The implementation of unsuitable tillage practices has the potential to disrupt the structure integrity of the ploughed layer, as well as to influence the physical parameters of the soil. The application of a reasonable tillage method has been demonstrated to result in an improvement in the physical quality of the soil. Three autumn tillage practices have been implemented at the Dongyang Experimental Station of Shanxi Agricultural University since 2016: no-tillage with straw mulch (NTS), autumn rotary tillage with straw incorporation (RTS), and autumn plough tillage with straw incorporation (PTS). The impact of autumn tillage practices on soil physical quality in the 0–30 cm profile of spring corn fields was evaluated following the corn harvest in 2018 and 2019. The results showed that compared to the NTS treatment, the application of RTS was found to have decreased significantly by 9.6%–24.2% in soil bulk density, while it increased significantly by 12.8%–34.0% in total porosity and by 43.5%–146.4% in macroporosity at a depth of 5–10 cm. In comparison to the NTS treatment, the adoption of PTS was found to decrease significantly by 10.7%–30.5% soil bulk density, while it increased significantly by 9.9%–42.7% the total porosity and 23.1%–202.8% the macroporosity at a depth of 0–10 cm. Furthermore, the soil microporosity significantly increase of 7.5%–11.1% under the RTS treatment at the 0–5 cm soil depth and 7.7%–11.2% under the PTS treatment at the 10–20 cm soil depth. Soil physical quality index (SQI) significantly increase under the RTS and PTS treatments, with a 41.26% and 57.57% improvement, respectively, in comparison to the NTS treatment. In summary, the adoption of autumn tillage with straw return (RTS and PTS) demonstrated a reduction in soil bulk density, an increase in soil porosity, macroporosity, and a promotion of capillary porosity, and promoted the improvement of soil physical quality on the Eastern Loess Plateau when compared to no-tillage with straw mulch (NTS).","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"52 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of autumn tillage with straw return on soil physical characteristics of corn fields in the eastern loess plateau\",\"authors\":\"Yuchen Fan, Yaqi Yuan, Tao Li, Wen Lin, Xiwang Tang, Gaimei Liang, Nana Li\",\"doi\":\"10.3389/fenvs.2024.1362616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of unsuitable tillage practices has the potential to disrupt the structure integrity of the ploughed layer, as well as to influence the physical parameters of the soil. The application of a reasonable tillage method has been demonstrated to result in an improvement in the physical quality of the soil. Three autumn tillage practices have been implemented at the Dongyang Experimental Station of Shanxi Agricultural University since 2016: no-tillage with straw mulch (NTS), autumn rotary tillage with straw incorporation (RTS), and autumn plough tillage with straw incorporation (PTS). The impact of autumn tillage practices on soil physical quality in the 0–30 cm profile of spring corn fields was evaluated following the corn harvest in 2018 and 2019. The results showed that compared to the NTS treatment, the application of RTS was found to have decreased significantly by 9.6%–24.2% in soil bulk density, while it increased significantly by 12.8%–34.0% in total porosity and by 43.5%–146.4% in macroporosity at a depth of 5–10 cm. In comparison to the NTS treatment, the adoption of PTS was found to decrease significantly by 10.7%–30.5% soil bulk density, while it increased significantly by 9.9%–42.7% the total porosity and 23.1%–202.8% the macroporosity at a depth of 0–10 cm. Furthermore, the soil microporosity significantly increase of 7.5%–11.1% under the RTS treatment at the 0–5 cm soil depth and 7.7%–11.2% under the PTS treatment at the 10–20 cm soil depth. Soil physical quality index (SQI) significantly increase under the RTS and PTS treatments, with a 41.26% and 57.57% improvement, respectively, in comparison to the NTS treatment. In summary, the adoption of autumn tillage with straw return (RTS and PTS) demonstrated a reduction in soil bulk density, an increase in soil porosity, macroporosity, and a promotion of capillary porosity, and promoted the improvement of soil physical quality on the Eastern Loess Plateau when compared to no-tillage with straw mulch (NTS).\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1362616\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1362616","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of autumn tillage with straw return on soil physical characteristics of corn fields in the eastern loess plateau
The implementation of unsuitable tillage practices has the potential to disrupt the structure integrity of the ploughed layer, as well as to influence the physical parameters of the soil. The application of a reasonable tillage method has been demonstrated to result in an improvement in the physical quality of the soil. Three autumn tillage practices have been implemented at the Dongyang Experimental Station of Shanxi Agricultural University since 2016: no-tillage with straw mulch (NTS), autumn rotary tillage with straw incorporation (RTS), and autumn plough tillage with straw incorporation (PTS). The impact of autumn tillage practices on soil physical quality in the 0–30 cm profile of spring corn fields was evaluated following the corn harvest in 2018 and 2019. The results showed that compared to the NTS treatment, the application of RTS was found to have decreased significantly by 9.6%–24.2% in soil bulk density, while it increased significantly by 12.8%–34.0% in total porosity and by 43.5%–146.4% in macroporosity at a depth of 5–10 cm. In comparison to the NTS treatment, the adoption of PTS was found to decrease significantly by 10.7%–30.5% soil bulk density, while it increased significantly by 9.9%–42.7% the total porosity and 23.1%–202.8% the macroporosity at a depth of 0–10 cm. Furthermore, the soil microporosity significantly increase of 7.5%–11.1% under the RTS treatment at the 0–5 cm soil depth and 7.7%–11.2% under the PTS treatment at the 10–20 cm soil depth. Soil physical quality index (SQI) significantly increase under the RTS and PTS treatments, with a 41.26% and 57.57% improvement, respectively, in comparison to the NTS treatment. In summary, the adoption of autumn tillage with straw return (RTS and PTS) demonstrated a reduction in soil bulk density, an increase in soil porosity, macroporosity, and a promotion of capillary porosity, and promoted the improvement of soil physical quality on the Eastern Loess Plateau when compared to no-tillage with straw mulch (NTS).
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.