S. V. Stolyar, E. D. Nikolaeva, O. A. Li, D. A. Velikanov, A. M. Vorotynov, V. F. Pyankov, V. P. Ladygina, A. L. Sukhachev, D. A. Balaev, R. S. Iskhakov
{"title":"以铁磁共振模式微波加热氧化铁粉","authors":"S. V. Stolyar, E. D. Nikolaeva, O. A. Li, D. A. Velikanov, A. M. Vorotynov, V. F. Pyankov, V. P. Ladygina, A. L. Sukhachev, D. A. Balaev, R. S. Iskhakov","doi":"10.1134/S2075113324700400","DOIUrl":null,"url":null,"abstract":"<p>By the example of α-Fe<sub>2</sub>O<sub>3</sub> hematite, 5Fe<sub>2</sub>O<sub>3</sub>⋅9H<sub>2</sub>O ferrihydrite, and γ-Fe<sub>2</sub>O<sub>3</sub> maghemite powders, a microwave-radiation-induced powder system temperature growth Δ<i>T</i><sub>max</sub> of several degrees has been measured in the ferromagnetic resonance mode at a frequency of 8.9 GHz. The powders heat up the most in the external field <i>H</i> coinciding with the ferromagnetic resonance field. The value of the Δ<i>T</i><sub>max</sub> effect depends on the magnetization of a powder material. The results obtained allow us to propose a new magnetic hyperthermia method for biomedical applications.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"927 - 930"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Heating of Oxidized Iron Powders in Ferromagnetic Resonance Mode\",\"authors\":\"S. V. Stolyar, E. D. Nikolaeva, O. A. Li, D. A. Velikanov, A. M. Vorotynov, V. F. Pyankov, V. P. Ladygina, A. L. Sukhachev, D. A. Balaev, R. S. Iskhakov\",\"doi\":\"10.1134/S2075113324700400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By the example of α-Fe<sub>2</sub>O<sub>3</sub> hematite, 5Fe<sub>2</sub>O<sub>3</sub>⋅9H<sub>2</sub>O ferrihydrite, and γ-Fe<sub>2</sub>O<sub>3</sub> maghemite powders, a microwave-radiation-induced powder system temperature growth Δ<i>T</i><sub>max</sub> of several degrees has been measured in the ferromagnetic resonance mode at a frequency of 8.9 GHz. The powders heat up the most in the external field <i>H</i> coinciding with the ferromagnetic resonance field. The value of the Δ<i>T</i><sub>max</sub> effect depends on the magnetization of a powder material. The results obtained allow us to propose a new magnetic hyperthermia method for biomedical applications.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 4\",\"pages\":\"927 - 930\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 以α-Fe2O3 赤铁矿、5Fe2O3⋅9H2O 铁水矿和γ-Fe2O3 镁铁矿粉末为例,在频率为 8.9 GHz 的铁磁共振模式下测量了微波辐射诱导的粉末体系温度增长ΔTmax(几度)。在与铁磁共振场重合的外部磁场 H 中,粉末的升温幅度最大。ΔTmax效应值取决于粉末材料的磁化率。根据所获得的结果,我们可以为生物医学应用提出一种新的磁热效应方法。
Microwave Heating of Oxidized Iron Powders in Ferromagnetic Resonance Mode
By the example of α-Fe2O3 hematite, 5Fe2O3⋅9H2O ferrihydrite, and γ-Fe2O3 maghemite powders, a microwave-radiation-induced powder system temperature growth ΔTmax of several degrees has been measured in the ferromagnetic resonance mode at a frequency of 8.9 GHz. The powders heat up the most in the external field H coinciding with the ferromagnetic resonance field. The value of the ΔTmax effect depends on the magnetization of a powder material. The results obtained allow us to propose a new magnetic hyperthermia method for biomedical applications.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.