Oladayo S. Ajani , Dzeuban Fenyom Ivan , Daison Darlan , P.N. Suganthan , Kaizhou Gao , Rammohan Mallipeddi
{"title":"作为多目标优化基准的深度强化学习:问题制定与性能评估","authors":"Oladayo S. Ajani , Dzeuban Fenyom Ivan , Daison Darlan , P.N. Suganthan , Kaizhou Gao , Rammohan Mallipeddi","doi":"10.1016/j.swevo.2024.101692","DOIUrl":null,"url":null,"abstract":"<div><p>The successful deployment of Deep learning in several challenging tasks has been translated into complex control problems from different domains through Deep Reinforcement Learning (DRL). Although DRL has been extensively formulated and solved as single-objective problems, nearly all real-world RL problems often feature two or more conflicting objectives, where the goal is to obtain a high-quality and diverse set of optimal policies for different objective preferences. Consequently, the development of Multi-Objective Deep Reinforcement Learning (MODRL) algorithms has gained a lot of traction in the literature. Generally, Evolutionary Algorithms (EAs) have been demonstrated to be scalable alternatives to the classical DRL paradigms when formulated as an optimization problem. Hence it is reasonable to employ Multi-objective Evolutionary Algorithms (MOEAs) to handle MODRL tasks. However, there are several factors constraining the progress of research along this line: first, there is a lack of a general problem formulation of MODRL tasks from an optimization perspective; second, there exist several challenges in performing benchmark assessments of MOEAs for MODRL problems. To overcome these limitations: (i) we present a formulation of MODRL tasks as general multi-objective optimization problems and analyze their complex characteristics from an optimization perspective; (ii) we present an end-to-end framework, termed DRLXBench, to generate MODRL benchmark test problems for seamless running of MOEAs (iii) we propose a test suite comprising of 12 MODRL problems with different characteristics such as many-objectives, degenerated Pareto fronts, concave and convex optimization problems, etc. (iv) Finally, we present and discuss baseline results on the proposed test problems using seven representative MOEAs.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101692"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning as multiobjective optimization benchmarks: Problem formulation and performance assessment\",\"authors\":\"Oladayo S. Ajani , Dzeuban Fenyom Ivan , Daison Darlan , P.N. Suganthan , Kaizhou Gao , Rammohan Mallipeddi\",\"doi\":\"10.1016/j.swevo.2024.101692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The successful deployment of Deep learning in several challenging tasks has been translated into complex control problems from different domains through Deep Reinforcement Learning (DRL). Although DRL has been extensively formulated and solved as single-objective problems, nearly all real-world RL problems often feature two or more conflicting objectives, where the goal is to obtain a high-quality and diverse set of optimal policies for different objective preferences. Consequently, the development of Multi-Objective Deep Reinforcement Learning (MODRL) algorithms has gained a lot of traction in the literature. Generally, Evolutionary Algorithms (EAs) have been demonstrated to be scalable alternatives to the classical DRL paradigms when formulated as an optimization problem. Hence it is reasonable to employ Multi-objective Evolutionary Algorithms (MOEAs) to handle MODRL tasks. However, there are several factors constraining the progress of research along this line: first, there is a lack of a general problem formulation of MODRL tasks from an optimization perspective; second, there exist several challenges in performing benchmark assessments of MOEAs for MODRL problems. To overcome these limitations: (i) we present a formulation of MODRL tasks as general multi-objective optimization problems and analyze their complex characteristics from an optimization perspective; (ii) we present an end-to-end framework, termed DRLXBench, to generate MODRL benchmark test problems for seamless running of MOEAs (iii) we propose a test suite comprising of 12 MODRL problems with different characteristics such as many-objectives, degenerated Pareto fronts, concave and convex optimization problems, etc. (iv) Finally, we present and discuss baseline results on the proposed test problems using seven representative MOEAs.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"90 \",\"pages\":\"Article 101692\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221065022400230X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221065022400230X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep reinforcement learning as multiobjective optimization benchmarks: Problem formulation and performance assessment
The successful deployment of Deep learning in several challenging tasks has been translated into complex control problems from different domains through Deep Reinforcement Learning (DRL). Although DRL has been extensively formulated and solved as single-objective problems, nearly all real-world RL problems often feature two or more conflicting objectives, where the goal is to obtain a high-quality and diverse set of optimal policies for different objective preferences. Consequently, the development of Multi-Objective Deep Reinforcement Learning (MODRL) algorithms has gained a lot of traction in the literature. Generally, Evolutionary Algorithms (EAs) have been demonstrated to be scalable alternatives to the classical DRL paradigms when formulated as an optimization problem. Hence it is reasonable to employ Multi-objective Evolutionary Algorithms (MOEAs) to handle MODRL tasks. However, there are several factors constraining the progress of research along this line: first, there is a lack of a general problem formulation of MODRL tasks from an optimization perspective; second, there exist several challenges in performing benchmark assessments of MOEAs for MODRL problems. To overcome these limitations: (i) we present a formulation of MODRL tasks as general multi-objective optimization problems and analyze their complex characteristics from an optimization perspective; (ii) we present an end-to-end framework, termed DRLXBench, to generate MODRL benchmark test problems for seamless running of MOEAs (iii) we propose a test suite comprising of 12 MODRL problems with different characteristics such as many-objectives, degenerated Pareto fronts, concave and convex optimization problems, etc. (iv) Finally, we present and discuss baseline results on the proposed test problems using seven representative MOEAs.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.