Chang-Zhe Zheng , Hong-Yan Sang , Li-Ning Xing , Wen-Qiang Zou , Lei-Lei Meng , Tao Meng
{"title":"用 Q-learning 自适应记忆算法解决多AGV 调度问题","authors":"Chang-Zhe Zheng , Hong-Yan Sang , Li-Ning Xing , Wen-Qiang Zou , Lei-Lei Meng , Tao Meng","doi":"10.1016/j.swevo.2024.101697","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the problem of dispatching multiple automated guided vehicles (AGVs) in an actual production workshop, aiming to minimize the transportation cost. To solve this problem, a self-adaptive memetic algorithm with Q-learning (Q-SAMA) is proposed. An improved nearest-neighbor task division heuristic is used for generating premium solutions. Additionally, a Q-learning is integrated to select appropriate neighborhood operators, thereby enhancing the algorithm's exploration ability. To prevent the algorithm from falling into a local optimum, the restart strategy is offered. In order to adapt Q-SAMA to different stages in the search process, the traditional crossover and mutation probabilities are no longer used. Instead, a self-adaptive probability is obtained based on the population's degree of concentration, and the sparsity relationship among individuals' fitness. Finally, experimental results validate the effectiveness of the proposed method. It is able to yield better results compared with other five state-of-the-art algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101697"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-adaptive memetic algorithm with Q-learning for solving the multi-AGVs dispatching problem\",\"authors\":\"Chang-Zhe Zheng , Hong-Yan Sang , Li-Ning Xing , Wen-Qiang Zou , Lei-Lei Meng , Tao Meng\",\"doi\":\"10.1016/j.swevo.2024.101697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we address the problem of dispatching multiple automated guided vehicles (AGVs) in an actual production workshop, aiming to minimize the transportation cost. To solve this problem, a self-adaptive memetic algorithm with Q-learning (Q-SAMA) is proposed. An improved nearest-neighbor task division heuristic is used for generating premium solutions. Additionally, a Q-learning is integrated to select appropriate neighborhood operators, thereby enhancing the algorithm's exploration ability. To prevent the algorithm from falling into a local optimum, the restart strategy is offered. In order to adapt Q-SAMA to different stages in the search process, the traditional crossover and mutation probabilities are no longer used. Instead, a self-adaptive probability is obtained based on the population's degree of concentration, and the sparsity relationship among individuals' fitness. Finally, experimental results validate the effectiveness of the proposed method. It is able to yield better results compared with other five state-of-the-art algorithms.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"90 \",\"pages\":\"Article 101697\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002359\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002359","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A self-adaptive memetic algorithm with Q-learning for solving the multi-AGVs dispatching problem
In this paper, we address the problem of dispatching multiple automated guided vehicles (AGVs) in an actual production workshop, aiming to minimize the transportation cost. To solve this problem, a self-adaptive memetic algorithm with Q-learning (Q-SAMA) is proposed. An improved nearest-neighbor task division heuristic is used for generating premium solutions. Additionally, a Q-learning is integrated to select appropriate neighborhood operators, thereby enhancing the algorithm's exploration ability. To prevent the algorithm from falling into a local optimum, the restart strategy is offered. In order to adapt Q-SAMA to different stages in the search process, the traditional crossover and mutation probabilities are no longer used. Instead, a self-adaptive probability is obtained based on the population's degree of concentration, and the sparsity relationship among individuals' fitness. Finally, experimental results validate the effectiveness of the proposed method. It is able to yield better results compared with other five state-of-the-art algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.