盘环纳米粒子中混合等离子体模式的不对称效应

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL Plasmonics Pub Date : 2024-08-07 DOI:10.1007/s11468-024-02468-1
Abbas Azarian, Ferydon Babaei
{"title":"盘环纳米粒子中混合等离子体模式的不对称效应","authors":"Abbas Azarian, Ferydon Babaei","doi":"10.1007/s11468-024-02468-1","DOIUrl":null,"url":null,"abstract":"<p>Here, the characteristics of hybrid plasmon modes of disk@ring nanoparticle were investigated by finite difference time domain simulation method. The change of the distance from the edge of the disk to the center of the ring, the change of the polarization angle, and the number of disks were considered as an asymmetry parameter in the research. The obtained results showed that two kinds of plasmon appear in near-infrared and visible regions, which are related to bonding and anti-bonding modes, respectively. This study can have potential applications in nano and biosensors in the detection of chemical species and threshold excitation of nanolasers in hybrid plasmonic wavelengths.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymmetry Effect on Hybrid Plasmon Modes in Disk@ring Nanoparticle\",\"authors\":\"Abbas Azarian, Ferydon Babaei\",\"doi\":\"10.1007/s11468-024-02468-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, the characteristics of hybrid plasmon modes of disk@ring nanoparticle were investigated by finite difference time domain simulation method. The change of the distance from the edge of the disk to the center of the ring, the change of the polarization angle, and the number of disks were considered as an asymmetry parameter in the research. The obtained results showed that two kinds of plasmon appear in near-infrared and visible regions, which are related to bonding and anti-bonding modes, respectively. This study can have potential applications in nano and biosensors in the detection of chemical species and threshold excitation of nanolasers in hybrid plasmonic wavelengths.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02468-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02468-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有限差分时域模拟方法研究了圆盘@圆环纳米粒子的混合等离子体模式特性。研究中将圆盘边缘到环中心的距离变化、极化角变化和圆盘数量作为不对称参数。研究结果表明,在近红外和可见光区域出现了两种等离子体,分别与成键和反成键模式有关。这项研究有望应用于纳米和生物传感器中化学物种的检测以及混合等离子体波长下纳米激光器的阈值激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Asymmetry Effect on Hybrid Plasmon Modes in Disk@ring Nanoparticle

Here, the characteristics of hybrid plasmon modes of disk@ring nanoparticle were investigated by finite difference time domain simulation method. The change of the distance from the edge of the disk to the center of the ring, the change of the polarization angle, and the number of disks were considered as an asymmetry parameter in the research. The obtained results showed that two kinds of plasmon appear in near-infrared and visible regions, which are related to bonding and anti-bonding modes, respectively. This study can have potential applications in nano and biosensors in the detection of chemical species and threshold excitation of nanolasers in hybrid plasmonic wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
期刊最新文献
Comparative Analysis of Two Different MIM Configurations of a Plasmonic Nanoantenna On the Transmission Line Analogy for Modeling Plasmonic Nanowire Circuits Terahertz-Multiplexed Metallic Metasurfaces for Enhanced Trace Sample Absorption Plasmonic Characteristics of LiF Filled Slab Waveguide in Isotropic Plasma Environment Synthesis, Characterization, and Modeling of Reduced Graphene Oxide Supported Adsorbent for Sorption of Pb(II) and Cr(VI) Ions from Binary Mixture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1