Jiachao Li, Ya’nan Zhou, He Zhang, Dayu Pan, Ying Gu, Bin Luo
{"title":"基于改进型 YOLOv5 轻量级模型的玉米株高自动读取测量标尺","authors":"Jiachao Li, Ya’nan Zhou, He Zhang, Dayu Pan, Ying Gu, Bin Luo","doi":"10.7717/peerj-cs.2207","DOIUrl":null,"url":null,"abstract":"Background\nPlant height is a significant indicator of maize phenotypic morphology, and is closely related to crop growth, biomass, and lodging resistance. Obtaining the maize plant height accurately is of great significance for cultivating high-yielding maize varieties. Traditional measurement methods are labor-intensive and not conducive to data recording and storage. Therefore, it is very essential to implement the automated reading of maize plant height from measurement scales using object detection algorithms. Method\nThis study proposed a lightweight detection model based on the improved YOLOv5. The MobileNetv3 network replaced the YOLOv5 backbone network, and the Normalization-based Attention Module attention mechanism module was introduced into the neck network. The CioU loss function was replaced with the EioU loss function. Finally, a combined algorithm was used to achieve the automatic reading of maize plant height from measurement scales. Results\nThe improved model achieved an average precision of 98.6%, a computational complexity of 1.2 GFLOPs, and occupied 1.8 MB of memory. The detection frame rate on the computer was 54.1 fps. Through comparisons with models such as YOLOv5s, YOLOv7 and YOLOv8s, it was evident that the comprehensive performance of the improved model in this study was superior. Finally, a comparison between the algorithm’s 160 plant height data obtained from the test set and manual readings demonstrated that the relative error between the algorithm’s results and manual readings was within 0.2 cm, meeting the requirements of automatic reading of maize height measuring scale.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"255 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize plant height automatic reading of measurement scale based on improved YOLOv5 lightweight model\",\"authors\":\"Jiachao Li, Ya’nan Zhou, He Zhang, Dayu Pan, Ying Gu, Bin Luo\",\"doi\":\"10.7717/peerj-cs.2207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background\\nPlant height is a significant indicator of maize phenotypic morphology, and is closely related to crop growth, biomass, and lodging resistance. Obtaining the maize plant height accurately is of great significance for cultivating high-yielding maize varieties. Traditional measurement methods are labor-intensive and not conducive to data recording and storage. Therefore, it is very essential to implement the automated reading of maize plant height from measurement scales using object detection algorithms. Method\\nThis study proposed a lightweight detection model based on the improved YOLOv5. The MobileNetv3 network replaced the YOLOv5 backbone network, and the Normalization-based Attention Module attention mechanism module was introduced into the neck network. The CioU loss function was replaced with the EioU loss function. Finally, a combined algorithm was used to achieve the automatic reading of maize plant height from measurement scales. Results\\nThe improved model achieved an average precision of 98.6%, a computational complexity of 1.2 GFLOPs, and occupied 1.8 MB of memory. The detection frame rate on the computer was 54.1 fps. Through comparisons with models such as YOLOv5s, YOLOv7 and YOLOv8s, it was evident that the comprehensive performance of the improved model in this study was superior. Finally, a comparison between the algorithm’s 160 plant height data obtained from the test set and manual readings demonstrated that the relative error between the algorithm’s results and manual readings was within 0.2 cm, meeting the requirements of automatic reading of maize height measuring scale.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2207\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Maize plant height automatic reading of measurement scale based on improved YOLOv5 lightweight model
Background
Plant height is a significant indicator of maize phenotypic morphology, and is closely related to crop growth, biomass, and lodging resistance. Obtaining the maize plant height accurately is of great significance for cultivating high-yielding maize varieties. Traditional measurement methods are labor-intensive and not conducive to data recording and storage. Therefore, it is very essential to implement the automated reading of maize plant height from measurement scales using object detection algorithms. Method
This study proposed a lightweight detection model based on the improved YOLOv5. The MobileNetv3 network replaced the YOLOv5 backbone network, and the Normalization-based Attention Module attention mechanism module was introduced into the neck network. The CioU loss function was replaced with the EioU loss function. Finally, a combined algorithm was used to achieve the automatic reading of maize plant height from measurement scales. Results
The improved model achieved an average precision of 98.6%, a computational complexity of 1.2 GFLOPs, and occupied 1.8 MB of memory. The detection frame rate on the computer was 54.1 fps. Through comparisons with models such as YOLOv5s, YOLOv7 and YOLOv8s, it was evident that the comprehensive performance of the improved model in this study was superior. Finally, a comparison between the algorithm’s 160 plant height data obtained from the test set and manual readings demonstrated that the relative error between the algorithm’s results and manual readings was within 0.2 cm, meeting the requirements of automatic reading of maize height measuring scale.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.