{"title":"通过叶片滑动实现粉末层铺展的离散元模拟:堆积因子、机理与优化","authors":"L. Dai, Y. R. Chan, G. Vastola, Y. W. Zhang","doi":"10.1007/s40571-024-00808-w","DOIUrl":null,"url":null,"abstract":"<p>We utilized the discrete element method to simulate the packing of a powder layer by blade spread. Our study revealed the following findings: (1) We uncovered a hereditary relationship that exists between the pouring heap and the packing layer, which plays a significant role in the non-uniform distribution of powder in the packing layer in terms of sizes and shapes. (2) We systematically analysed the influence of sliding speed on powder packing and recommended a threshold sliding rate of 0.15 m/s for achieving a high packing quality. (3) Contrary to the conventional belief that non-spherical powders tend to reduce packing density, our study discovered that the inclusion of a small portion of non-spherical powders can create pathways for efficient gap-filling, resulting in denser packings. (4) By adjusting inter-powder interactions, we observed a transition from discrete powder packing to cluster deposition. (5) We proposed and demonstrated the efficacy of a two-step spreading technique followed by multiple shaking cycles in achieving maximum random packing density. Overall, our work provides a comprehensive understanding of mechanisms involved in the powder spreading process through blade sliding, which may lead to enhanced powder packing density and uniformity and ultimately improved outcomes in additive manufacturing.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"22 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete element simulation of powder layer spreading by blade sliding: packing factor, mechanism, and optimization\",\"authors\":\"L. Dai, Y. R. Chan, G. Vastola, Y. W. Zhang\",\"doi\":\"10.1007/s40571-024-00808-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We utilized the discrete element method to simulate the packing of a powder layer by blade spread. Our study revealed the following findings: (1) We uncovered a hereditary relationship that exists between the pouring heap and the packing layer, which plays a significant role in the non-uniform distribution of powder in the packing layer in terms of sizes and shapes. (2) We systematically analysed the influence of sliding speed on powder packing and recommended a threshold sliding rate of 0.15 m/s for achieving a high packing quality. (3) Contrary to the conventional belief that non-spherical powders tend to reduce packing density, our study discovered that the inclusion of a small portion of non-spherical powders can create pathways for efficient gap-filling, resulting in denser packings. (4) By adjusting inter-powder interactions, we observed a transition from discrete powder packing to cluster deposition. (5) We proposed and demonstrated the efficacy of a two-step spreading technique followed by multiple shaking cycles in achieving maximum random packing density. Overall, our work provides a comprehensive understanding of mechanisms involved in the powder spreading process through blade sliding, which may lead to enhanced powder packing density and uniformity and ultimately improved outcomes in additive manufacturing.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00808-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00808-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discrete element simulation of powder layer spreading by blade sliding: packing factor, mechanism, and optimization
We utilized the discrete element method to simulate the packing of a powder layer by blade spread. Our study revealed the following findings: (1) We uncovered a hereditary relationship that exists between the pouring heap and the packing layer, which plays a significant role in the non-uniform distribution of powder in the packing layer in terms of sizes and shapes. (2) We systematically analysed the influence of sliding speed on powder packing and recommended a threshold sliding rate of 0.15 m/s for achieving a high packing quality. (3) Contrary to the conventional belief that non-spherical powders tend to reduce packing density, our study discovered that the inclusion of a small portion of non-spherical powders can create pathways for efficient gap-filling, resulting in denser packings. (4) By adjusting inter-powder interactions, we observed a transition from discrete powder packing to cluster deposition. (5) We proposed and demonstrated the efficacy of a two-step spreading technique followed by multiple shaking cycles in achieving maximum random packing density. Overall, our work provides a comprehensive understanding of mechanisms involved in the powder spreading process through blade sliding, which may lead to enhanced powder packing density and uniformity and ultimately improved outcomes in additive manufacturing.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.