使用具有氧化还原活性的二(亚氨基)吡啶配体的 Ni(II) 复合物电催化亚硝酸盐还原成铵离子

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-09-16 DOI:10.1039/d4cy00715h
Somayeh Norouzinyanlakvan , Jeffrey Ovens , Darrin Richeson
{"title":"使用具有氧化还原活性的二(亚氨基)吡啶配体的 Ni(II) 复合物电催化亚硝酸盐还原成铵离子","authors":"Somayeh Norouzinyanlakvan ,&nbsp;Jeffrey Ovens ,&nbsp;Darrin Richeson","doi":"10.1039/d4cy00715h","DOIUrl":null,"url":null,"abstract":"<div><div>Human disruption of the nitrogen cycle motivates the exploration into electrocatalytic reduction of nitrite. Homogeneous Ni(<span>ii</span>) complexes with tridentate redox-active bis(imino)pyridine ligands demonstrated high effectiveness and selectivity for electrocatalytic reduction of nitrite to the ammonium ion and hydroxylamine in solutions buffered with 4-morpholinepropanesulfonic acid (MOPS). Controlled potential coulometry at −1.4 V <em>vs.</em> Fc<sup>0/+</sup> predominantly produced the ammonium ion with Faradaic efficiencies of ≥50%. Foot-of-the-wave analysis yielded calculated turn-over frequencies ranging from 790 to 850 s<sup>−1</sup>. Computational investigations of the catalytic mechanism provided insights into the proposed chemical steps and detailed the energetics of electron and proton transfers.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5422-5429"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic reduction of nitrite to ammonium ion using Ni(ii) complexes with redox-active di(imino)pyridine ligands†\",\"authors\":\"Somayeh Norouzinyanlakvan ,&nbsp;Jeffrey Ovens ,&nbsp;Darrin Richeson\",\"doi\":\"10.1039/d4cy00715h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human disruption of the nitrogen cycle motivates the exploration into electrocatalytic reduction of nitrite. Homogeneous Ni(<span>ii</span>) complexes with tridentate redox-active bis(imino)pyridine ligands demonstrated high effectiveness and selectivity for electrocatalytic reduction of nitrite to the ammonium ion and hydroxylamine in solutions buffered with 4-morpholinepropanesulfonic acid (MOPS). Controlled potential coulometry at −1.4 V <em>vs.</em> Fc<sup>0/+</sup> predominantly produced the ammonium ion with Faradaic efficiencies of ≥50%. Foot-of-the-wave analysis yielded calculated turn-over frequencies ranging from 790 to 850 s<sup>−1</sup>. Computational investigations of the catalytic mechanism provided insights into the proposed chemical steps and detailed the energetics of electron and proton transfers.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"14 18\",\"pages\":\"Pages 5422-5429\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S204447532400460X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S204447532400460X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

人类对氮循环的破坏促使人们探索亚硝酸盐的电催化还原。具有三叉氧化还原活性双(亚氨基)吡啶配体的均相 Ni(II) 复合物在 4-吗啉丙磺酸(MOPS)缓冲溶液中电催化将亚硝酸盐还原成铵离子和羟胺时,表现出很高的有效性和选择性。在 -1.4 V 对 Fc0/+ 的受控电位耦合作用下,主要产生铵离子,法拉第效率≥50%。波脚分析计算得出的翻转频率为 790 至 850 s-1。催化机理的计算研究深入揭示了拟议的化学步骤,并详细说明了电子和质子转移的能量学原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocatalytic reduction of nitrite to ammonium ion using Ni(ii) complexes with redox-active di(imino)pyridine ligands†
Human disruption of the nitrogen cycle motivates the exploration into electrocatalytic reduction of nitrite. Homogeneous Ni(ii) complexes with tridentate redox-active bis(imino)pyridine ligands demonstrated high effectiveness and selectivity for electrocatalytic reduction of nitrite to the ammonium ion and hydroxylamine in solutions buffered with 4-morpholinepropanesulfonic acid (MOPS). Controlled potential coulometry at −1.4 V vs. Fc0/+ predominantly produced the ammonium ion with Faradaic efficiencies of ≥50%. Foot-of-the-wave analysis yielded calculated turn-over frequencies ranging from 790 to 850 s−1. Computational investigations of the catalytic mechanism provided insights into the proposed chemical steps and detailed the energetics of electron and proton transfers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Back cover Insight into the influence of Re and Cl on Ag catalysts in ethylene epoxidation. Back cover Improved charge carrier mobility in a copper oxide heterostructure enhances the photocatalytic partial oxidation of benzyl alcohol to benzaldehyde†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1