系统研究 ZrX2N4(X = Si,Ge)单层材料的热电特性

Chayan Das, Dibyajyoti Saikia, Satyajit Sahu
{"title":"系统研究 ZrX2N4(X = Si,Ge)单层材料的热电特性","authors":"Chayan Das, Dibyajyoti Saikia, Satyajit Sahu","doi":"arxiv-2408.03971","DOIUrl":null,"url":null,"abstract":"In the past decade, it has been demonstrated that monolayers of metal\ndichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X =\nSi, Ge) is a reasonable choice for thermoelectric applications when considering\na favorable value of the figure of merit in two-dimensional (2D) layered\nmaterials. In this study, we examined the thermoelectric characteristics of the\ntwo-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a\ncombination of Density Functional Theory (DFT) and the Boltzmann Transport\nEquation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a\ntemperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for\nn-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material\nexhibited a thermoelectric figure of merit (ZT) of around 0.7 at room\ntemperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively\nlower thermoelectric figure of merit (ZT) at ambient temperature. At higher\ntemperatures, the ZT value experiences a substantial increase, reaching 0.89\nand 0.82 for p-type and n-type materials, respectively, at 900 K. Through our\nanalysis of the electronic band structure, we have determined that ZrSi2N4 and\nZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as\nper the Heyd-Scuseria-Ernzerhof (HSE) approximation.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic Investigation of Thermoelectric Properties of Monolayers of ZrX2N4(X = Si, Ge)\",\"authors\":\"Chayan Das, Dibyajyoti Saikia, Satyajit Sahu\",\"doi\":\"arxiv-2408.03971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, it has been demonstrated that monolayers of metal\\ndichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X =\\nSi, Ge) is a reasonable choice for thermoelectric applications when considering\\na favorable value of the figure of merit in two-dimensional (2D) layered\\nmaterials. In this study, we examined the thermoelectric characteristics of the\\ntwo-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a\\ncombination of Density Functional Theory (DFT) and the Boltzmann Transport\\nEquation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a\\ntemperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for\\nn-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material\\nexhibited a thermoelectric figure of merit (ZT) of around 0.7 at room\\ntemperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively\\nlower thermoelectric figure of merit (ZT) at ambient temperature. At higher\\ntemperatures, the ZT value experiences a substantial increase, reaching 0.89\\nand 0.82 for p-type and n-type materials, respectively, at 900 K. Through our\\nanalysis of the electronic band structure, we have determined that ZrSi2N4 and\\nZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as\\nper the Heyd-Scuseria-Ernzerhof (HSE) approximation.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,已经证明单层金属二钙化物非常适合热电应用。考虑到二维(2D)层状材料的优越性,ZrX2N4(X = Si、Ge)是热电应用的合理选择。在本研究中,我们结合密度泛函理论(DFT)和玻尔兹曼输运方程(BTE),研究了 ZrX2N4(其中 X 可以是 Si 或 Ge)二维单层材料的热电特性。在 900 K 的温度下,p 型 ZrGe2N4 的热电功勋值 (ZT) 达到 0.90,而在相同温度下,n 型 ZrGe2N4 的 ZT 为 0.83。此外,p 型 ZrGe2N4 材料在室温下的热电功勋值(ZT)约为 0.7。相反,ZrSi2N4 材料在室温下的热电功勋值(ZT)相对较低。通过对电子能带结构的分析,我们确定 ZrSi2N4 和 ZrGe2N4 根据海德-斯库塞亚-恩泽霍夫(HSE)近似法显示的间接带隙(BG)分别为 2.74 eV 和 2.66 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic Investigation of Thermoelectric Properties of Monolayers of ZrX2N4(X = Si, Ge)
In the past decade, it has been demonstrated that monolayers of metal dichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X = Si, Ge) is a reasonable choice for thermoelectric applications when considering a favorable value of the figure of merit in two-dimensional (2D) layered materials. In this study, we examined the thermoelectric characteristics of the two-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a combination of Density Functional Theory (DFT) and the Boltzmann Transport Equation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a temperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for n-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material exhibited a thermoelectric figure of merit (ZT) of around 0.7 at room temperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively lower thermoelectric figure of merit (ZT) at ambient temperature. At higher temperatures, the ZT value experiences a substantial increase, reaching 0.89 and 0.82 for p-type and n-type materials, respectively, at 900 K. Through our analysis of the electronic band structure, we have determined that ZrSi2N4 and ZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as per the Heyd-Scuseria-Ernzerhof (HSE) approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1