机器学习支持退火法预测大规范晶体结构

Yannick Couzinie, Yuya Seki, Yusuke Nishiya, Hirofumi Nishi, Taichi Kosugi, Shu Tanaka, Yu-ichiro Matsushita
{"title":"机器学习支持退火法预测大规范晶体结构","authors":"Yannick Couzinie, Yuya Seki, Yusuke Nishiya, Hirofumi Nishi, Taichi Kosugi, Shu Tanaka, Yu-ichiro Matsushita","doi":"arxiv-2408.03556","DOIUrl":null,"url":null,"abstract":"This study investigates the application of Factorization Machines with\nQuantum Annealing (FMQA) to address the crystal structure problem (CSP) in\nmaterials science. FMQA is a black-box optimization algorithm that combines\nmachine learning with annealing machines to find samples to a black-box\nfunction that minimize a given loss. The CSP involves determining the optimal\narrangement of atoms in a material based on its chemical composition, a\ncritical challenge in materials science. We explore FMQA's ability to\nefficiently sample optimal crystal configurations by setting the loss function\nto the energy of the crystal configuration as given by a predefined interatomic\npotential. Further we investigate how well the energies of the various\nmetastable configurations, or local minima of the potential, are learned by the\nalgorithm. Our investigation reveals FMQA's potential in quick ground state\nsampling and in recovering relational order between local minima.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning supported annealing for prediction of grand canonical crystal structures\",\"authors\":\"Yannick Couzinie, Yuya Seki, Yusuke Nishiya, Hirofumi Nishi, Taichi Kosugi, Shu Tanaka, Yu-ichiro Matsushita\",\"doi\":\"arxiv-2408.03556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the application of Factorization Machines with\\nQuantum Annealing (FMQA) to address the crystal structure problem (CSP) in\\nmaterials science. FMQA is a black-box optimization algorithm that combines\\nmachine learning with annealing machines to find samples to a black-box\\nfunction that minimize a given loss. The CSP involves determining the optimal\\narrangement of atoms in a material based on its chemical composition, a\\ncritical challenge in materials science. We explore FMQA's ability to\\nefficiently sample optimal crystal configurations by setting the loss function\\nto the energy of the crystal configuration as given by a predefined interatomic\\npotential. Further we investigate how well the energies of the various\\nmetastable configurations, or local minima of the potential, are learned by the\\nalgorithm. Our investigation reveals FMQA's potential in quick ground state\\nsampling and in recovering relational order between local minima.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何应用因式分解机与量子退火(FMQA)来解决材料科学中的晶体结构问题(CSP)。FMQA 是一种黑箱优化算法,它将机器学习与退火机结合起来,为黑箱函数寻找最小化给定损失的样本。CSP 涉及根据材料的化学成分确定材料中原子的最佳排列,这是材料科学中的一项重大挑战。通过将损耗函数设置为预定义原子间势能给出的晶体构型能量,我们探索了 FMQA 对最佳晶体构型进行有效采样的能力。此外,我们还研究了该算法对各种可变构型的能量或势能的局部极小值的学习效果。我们的研究揭示了 FMQA 在快速基态取样和恢复局部极小值之间的关系顺序方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning supported annealing for prediction of grand canonical crystal structures
This study investigates the application of Factorization Machines with Quantum Annealing (FMQA) to address the crystal structure problem (CSP) in materials science. FMQA is a black-box optimization algorithm that combines machine learning with annealing machines to find samples to a black-box function that minimize a given loss. The CSP involves determining the optimal arrangement of atoms in a material based on its chemical composition, a critical challenge in materials science. We explore FMQA's ability to efficiently sample optimal crystal configurations by setting the loss function to the energy of the crystal configuration as given by a predefined interatomic potential. Further we investigate how well the energies of the various metastable configurations, or local minima of the potential, are learned by the algorithm. Our investigation reveals FMQA's potential in quick ground state sampling and in recovering relational order between local minima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1