SmCo-1:7 磁体中纳米结构对矫顽力的影响:高通量微磁数据的机器学习

Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu
{"title":"SmCo-1:7 磁体中纳米结构对矫顽力的影响:高通量微磁数据的机器学习","authors":"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu","doi":"arxiv-2408.03198","DOIUrl":null,"url":null,"abstract":"Around 17,000 micromagnetic simulations were performed with a wide variation\nof geometric and magnetic parameters of different cellular nanostructures in\nthe samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction\nneural network (NN) model is trained to unveil the influence of these\nparameters on the coercivity of materials, along with the sensitivity analysis.\nResults indicate the important role of the 1:5-phase in enhancing coercivity.\nMoreover, an inverse design NN model is obtained to suggest the nanostructure\nfor a queried coercivity.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coercivity influence of nanostructure in SmCo-1:7 magnets: Machine learning of high-throughput micromagnetic data\",\"authors\":\"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu\",\"doi\":\"arxiv-2408.03198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Around 17,000 micromagnetic simulations were performed with a wide variation\\nof geometric and magnetic parameters of different cellular nanostructures in\\nthe samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction\\nneural network (NN) model is trained to unveil the influence of these\\nparameters on the coercivity of materials, along with the sensitivity analysis.\\nResults indicate the important role of the 1:5-phase in enhancing coercivity.\\nMoreover, an inverse design NN model is obtained to suggest the nanostructure\\nfor a queried coercivity.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"307 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对钐钴基 1:7 型(SmCo-1:7)磁体中不同细胞纳米结构的几何和磁性参数进行了约 17,000 次微磁模拟。结果表明,1:5 相在提高矫顽力方面起着重要作用。此外,还建立了一个反向设计 NN 模型,为查询矫顽力的纳米结构提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coercivity influence of nanostructure in SmCo-1:7 magnets: Machine learning of high-throughput micromagnetic data
Around 17,000 micromagnetic simulations were performed with a wide variation of geometric and magnetic parameters of different cellular nanostructures in the samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction neural network (NN) model is trained to unveil the influence of these parameters on the coercivity of materials, along with the sensitivity analysis. Results indicate the important role of the 1:5-phase in enhancing coercivity. Moreover, an inverse design NN model is obtained to suggest the nanostructure for a queried coercivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1