Desmond Attah-Kyei, Dmitry Sukhomlinov, Lassi Klemettinen, Radoslaw Michallik, Hugh O’Brien, Pekka Taskinen, Daniel Lindberg
{"title":"用生物炭对铜渣进行火法冶金还原以回收金属","authors":"Desmond Attah-Kyei, Dmitry Sukhomlinov, Lassi Klemettinen, Radoslaw Michallik, Hugh O’Brien, Pekka Taskinen, Daniel Lindberg","doi":"10.1007/s40831-024-00885-4","DOIUrl":null,"url":null,"abstract":"<p>Large amounts of slag are generated during pyrometallurgical processing in copper production. Due to the presence of valuable elements, the improper disposal of huge quantities of copper slag produced, results in significant loss of resources as well as environmental issues. Analyses of the copper slag show that it contains valuable metals, particularly copper and nickel. In this work, four biochars were employed as fossil-free reducing agents to recover valuable metals from the slag. Reduction experiments were performed in a vertical furnace at temperatures 1250, 1300 and 1350 °C for 60 min in order to investigate the effect of temperature. Moreover, the effect of time on reduction progress was studied at 1250 °C and the concentrations of CO and CO<sub>2</sub> in the off-gas were measured with a gas analyzer. Copper slag was reacted with metallurgical coke for comparison and the products were analyzed with EPMA and LA-ICPMS. The results revealed that reduction rapidly progresses to the formation of metal alloy within 10 min. Valuable metals like copper, nickel and arsenic were the first to be reduced to the metal phase. As reduction time increased, iron was also reduced and combined with the metal droplet. The use of biochar as reductant was shown to be more effective than coke especially at lower temperatures. In addition, thermodynamic modelling was performed with FactSage and HSC and compared with the experimental results. The simulations with HSC showed the sequence of reactions taking place and the calculations by FactSage were in agreement with the experiments.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"78 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrometallurgical Reduction of Copper Slag with Biochar for Metal Recovery\",\"authors\":\"Desmond Attah-Kyei, Dmitry Sukhomlinov, Lassi Klemettinen, Radoslaw Michallik, Hugh O’Brien, Pekka Taskinen, Daniel Lindberg\",\"doi\":\"10.1007/s40831-024-00885-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large amounts of slag are generated during pyrometallurgical processing in copper production. Due to the presence of valuable elements, the improper disposal of huge quantities of copper slag produced, results in significant loss of resources as well as environmental issues. Analyses of the copper slag show that it contains valuable metals, particularly copper and nickel. In this work, four biochars were employed as fossil-free reducing agents to recover valuable metals from the slag. Reduction experiments were performed in a vertical furnace at temperatures 1250, 1300 and 1350 °C for 60 min in order to investigate the effect of temperature. Moreover, the effect of time on reduction progress was studied at 1250 °C and the concentrations of CO and CO<sub>2</sub> in the off-gas were measured with a gas analyzer. Copper slag was reacted with metallurgical coke for comparison and the products were analyzed with EPMA and LA-ICPMS. The results revealed that reduction rapidly progresses to the formation of metal alloy within 10 min. Valuable metals like copper, nickel and arsenic were the first to be reduced to the metal phase. As reduction time increased, iron was also reduced and combined with the metal droplet. The use of biochar as reductant was shown to be more effective than coke especially at lower temperatures. In addition, thermodynamic modelling was performed with FactSage and HSC and compared with the experimental results. The simulations with HSC showed the sequence of reactions taking place and the calculations by FactSage were in agreement with the experiments.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00885-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00885-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Pyrometallurgical Reduction of Copper Slag with Biochar for Metal Recovery
Large amounts of slag are generated during pyrometallurgical processing in copper production. Due to the presence of valuable elements, the improper disposal of huge quantities of copper slag produced, results in significant loss of resources as well as environmental issues. Analyses of the copper slag show that it contains valuable metals, particularly copper and nickel. In this work, four biochars were employed as fossil-free reducing agents to recover valuable metals from the slag. Reduction experiments were performed in a vertical furnace at temperatures 1250, 1300 and 1350 °C for 60 min in order to investigate the effect of temperature. Moreover, the effect of time on reduction progress was studied at 1250 °C and the concentrations of CO and CO2 in the off-gas were measured with a gas analyzer. Copper slag was reacted with metallurgical coke for comparison and the products were analyzed with EPMA and LA-ICPMS. The results revealed that reduction rapidly progresses to the formation of metal alloy within 10 min. Valuable metals like copper, nickel and arsenic were the first to be reduced to the metal phase. As reduction time increased, iron was also reduced and combined with the metal droplet. The use of biochar as reductant was shown to be more effective than coke especially at lower temperatures. In addition, thermodynamic modelling was performed with FactSage and HSC and compared with the experimental results. The simulations with HSC showed the sequence of reactions taking place and the calculations by FactSage were in agreement with the experiments.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.