自校准智能 OCT-SLO 系统Mayank Goswami

Mayank Goswami
{"title":"自校准智能 OCT-SLO 系统Mayank Goswami","authors":"Mayank Goswami","doi":"arxiv-2408.02703","DOIUrl":null,"url":null,"abstract":"A unique sample independent 3D self calibration methodology is tested on a\nunique optical coherence tomography and multi-spectral scanning laser\nophthalmoscope (OCT-SLO) hybrid system. Operators visual cognition is replaced\nby computer vision using the proposed novel fully automatic AI-driven system\ndesign. Sample specific automatic contrast adjustment of the beam is achieved\non the pre-instructed region of interest. The AI model deduces infrared,\nfluorescence, and visual spectrum optical alignment by estimating\npre-instructed features quantitatively. The tested approach, however, is\nflexible enough to utilize any apt AI model. Relative comparison with classical\nsignal-to-noise-driven automation is shown to be 200 percent inferior and 130\npercent slower than the AI-driven approach. The best spatial resolution of the\nsystem is found to be (a) 2.41 microns in glass bead eye phantom, 0.76 with STD\n0.46 microns in the mouse retina in the axial direction, and (b) better than\n228 line pair per millimeter (lp per mm) or 2 microns for all three spectrums,\ni.e., 488 nm, 840 nm, and 520 to 550 nm emission in coronal, frontal or x-y\nplane. Intelligent automation reduces the possibility of developing cold\ncataracts (especially in mouse imaging) and patient-associated discomfort due\nto delay during manual alignment by facilitating easy handling for swift ocular\nimaging and better accuracy. The automatic novel tabletop compact system\nprovides true functional 3D images in three different spectrums for dynamic\nsample profiles. This is especially useful for photodynamic imaging treatment.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-calibrating Intelligent OCT-SLO SystemMayank Goswami\",\"authors\":\"Mayank Goswami\",\"doi\":\"arxiv-2408.02703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unique sample independent 3D self calibration methodology is tested on a\\nunique optical coherence tomography and multi-spectral scanning laser\\nophthalmoscope (OCT-SLO) hybrid system. Operators visual cognition is replaced\\nby computer vision using the proposed novel fully automatic AI-driven system\\ndesign. Sample specific automatic contrast adjustment of the beam is achieved\\non the pre-instructed region of interest. The AI model deduces infrared,\\nfluorescence, and visual spectrum optical alignment by estimating\\npre-instructed features quantitatively. The tested approach, however, is\\nflexible enough to utilize any apt AI model. Relative comparison with classical\\nsignal-to-noise-driven automation is shown to be 200 percent inferior and 130\\npercent slower than the AI-driven approach. The best spatial resolution of the\\nsystem is found to be (a) 2.41 microns in glass bead eye phantom, 0.76 with STD\\n0.46 microns in the mouse retina in the axial direction, and (b) better than\\n228 line pair per millimeter (lp per mm) or 2 microns for all three spectrums,\\ni.e., 488 nm, 840 nm, and 520 to 550 nm emission in coronal, frontal or x-y\\nplane. Intelligent automation reduces the possibility of developing cold\\ncataracts (especially in mouse imaging) and patient-associated discomfort due\\nto delay during manual alignment by facilitating easy handling for swift ocular\\nimaging and better accuracy. The automatic novel tabletop compact system\\nprovides true functional 3D images in three different spectrums for dynamic\\nsample profiles. This is especially useful for photodynamic imaging treatment.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在独特的光学相干断层扫描和多光谱扫描激光眼科视网膜镜(OCT-SLO)混合系统上测试了一种独特的独立于样本的三维自校准方法。利用所提出的新型全自动人工智能驱动系统设计,计算机视觉取代了操作员的视觉认知。针对特定样本的光束对比度自动调节可在预先指示的感兴趣区域内实现。人工智能模型通过定量估计预先指示的特征,推导出红外、荧光和可视光谱光学配准。不过,所测试的方法非常灵活,可以利用任何合适的人工智能模型。与经典的信号-噪声驱动自动化方法相比,人工智能驱动方法的性能要差 200%,速度要慢 130%。该系统的最佳空间分辨率为:(a)玻璃珠眼球模型中为 2.41 微米,小鼠视网膜轴向为 0.76 微米(标准偏差为 0.46 微米);(b)所有三种光谱,即冠状面、正面或 x-y 平面上的 488 纳米、840 纳米和 520 至 550 纳米发射,均优于 228 线对/毫米(lp per mm)或 2 微米。智能自动化降低了因手动校准过程中的延迟而导致冷内障(尤其是在小鼠成像中)和患者不适的可能性,操作简便,可快速进行眼部成像并提高准确性。新型台式紧凑型自动系统可提供三种不同光谱的真实功能三维图像,用于动态样本剖面。这对于光动力成像治疗尤其有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-calibrating Intelligent OCT-SLO SystemMayank Goswami
A unique sample independent 3D self calibration methodology is tested on a unique optical coherence tomography and multi-spectral scanning laser ophthalmoscope (OCT-SLO) hybrid system. Operators visual cognition is replaced by computer vision using the proposed novel fully automatic AI-driven system design. Sample specific automatic contrast adjustment of the beam is achieved on the pre-instructed region of interest. The AI model deduces infrared, fluorescence, and visual spectrum optical alignment by estimating pre-instructed features quantitatively. The tested approach, however, is flexible enough to utilize any apt AI model. Relative comparison with classical signal-to-noise-driven automation is shown to be 200 percent inferior and 130 percent slower than the AI-driven approach. The best spatial resolution of the system is found to be (a) 2.41 microns in glass bead eye phantom, 0.76 with STD 0.46 microns in the mouse retina in the axial direction, and (b) better than 228 line pair per millimeter (lp per mm) or 2 microns for all three spectrums, i.e., 488 nm, 840 nm, and 520 to 550 nm emission in coronal, frontal or x-y plane. Intelligent automation reduces the possibility of developing cold cataracts (especially in mouse imaging) and patient-associated discomfort due to delay during manual alignment by facilitating easy handling for swift ocular imaging and better accuracy. The automatic novel tabletop compact system provides true functional 3D images in three different spectrums for dynamic sample profiles. This is especially useful for photodynamic imaging treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1