{"title":"多语言在线网络中带有事件触发非连续反馈控制的随机谣言传播模型","authors":"Yang Xia, Haijun Jiang","doi":"10.1007/s12190-024-02184-3","DOIUrl":null,"url":null,"abstract":"<p>Benefiting from the development of Internet technology, online social networks with multilingual communication function are in a booming stage, greatly contributing to the convenience, extensiveness and diversity of information exchange. To explore the rumor diffusion mechanism and efficient control strategies in multilingual online environments, a novel stochastic rumor-spreading model with the generalized nonlinear diffusion form is proposed. Firstly, we strictly prove the positive and existence uniqueness of the model solution to ensure that it corresponds to the realistic meaning. Then, the asymptotic behavior around the rumor-free equilibrium is acquired by using graph theorey and stochastic stability theory. Besides, we obtain conditions for the stationary distribution of stochastic rumor-spreading model based on the Kasminskii’s theory. Moreover, an event-triggered discontinuous feedback (ETDF) control strategy that can be applied to online networks is proposed, which initiates control only when an alert threshold is exceeded and updates the control intensity when an event-triggered condition is reached. Finally, numerical simulations verify the correctness of the theoretical results, and an actual multilingual Internet rumor case shows the applicability of the model.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic rumor spreading model with event-triggered discontinuous feedback control in multilingual online networks\",\"authors\":\"Yang Xia, Haijun Jiang\",\"doi\":\"10.1007/s12190-024-02184-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Benefiting from the development of Internet technology, online social networks with multilingual communication function are in a booming stage, greatly contributing to the convenience, extensiveness and diversity of information exchange. To explore the rumor diffusion mechanism and efficient control strategies in multilingual online environments, a novel stochastic rumor-spreading model with the generalized nonlinear diffusion form is proposed. Firstly, we strictly prove the positive and existence uniqueness of the model solution to ensure that it corresponds to the realistic meaning. Then, the asymptotic behavior around the rumor-free equilibrium is acquired by using graph theorey and stochastic stability theory. Besides, we obtain conditions for the stationary distribution of stochastic rumor-spreading model based on the Kasminskii’s theory. Moreover, an event-triggered discontinuous feedback (ETDF) control strategy that can be applied to online networks is proposed, which initiates control only when an alert threshold is exceeded and updates the control intensity when an event-triggered condition is reached. Finally, numerical simulations verify the correctness of the theoretical results, and an actual multilingual Internet rumor case shows the applicability of the model.</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02184-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02184-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A stochastic rumor spreading model with event-triggered discontinuous feedback control in multilingual online networks
Benefiting from the development of Internet technology, online social networks with multilingual communication function are in a booming stage, greatly contributing to the convenience, extensiveness and diversity of information exchange. To explore the rumor diffusion mechanism and efficient control strategies in multilingual online environments, a novel stochastic rumor-spreading model with the generalized nonlinear diffusion form is proposed. Firstly, we strictly prove the positive and existence uniqueness of the model solution to ensure that it corresponds to the realistic meaning. Then, the asymptotic behavior around the rumor-free equilibrium is acquired by using graph theorey and stochastic stability theory. Besides, we obtain conditions for the stationary distribution of stochastic rumor-spreading model based on the Kasminskii’s theory. Moreover, an event-triggered discontinuous feedback (ETDF) control strategy that can be applied to online networks is proposed, which initiates control only when an alert threshold is exceeded and updates the control intensity when an event-triggered condition is reached. Finally, numerical simulations verify the correctness of the theoretical results, and an actual multilingual Internet rumor case shows the applicability of the model.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.