phyddle:利用深度学习探索系统发生学模型的软件

Michael J. Landis, Ammon Thompson
{"title":"phyddle:利用深度学习探索系统发生学模型的软件","authors":"Michael J. Landis, Ammon Thompson","doi":"10.1101/2024.08.06.606717","DOIUrl":null,"url":null,"abstract":"Many realistic phylogenetic models lack tractable likelihood functions, prohibiting their use with standard inference methods. We present phyddle, a pipeline-based toolkit for performing phylogenetic modeling tasks using likelihood-free deep learning approaches. <kbd>phyddle</kbd> coordinates modeling tasks through five analysis steps (<em>Simulate, Format, Train, Estimate</em>, and <em>Plot</em>) that transform raw phylogenetic datasets as input into numerical and visualized model-based output. Benchmarks show that <kbd>phyddle</kbd> accurately performs a range of inference tasks, such as estimating macroevolutionary parameters, selecting among continuous trait evolution models, and passing coverage tests for epidemiological models, even for models that lack tractable likelihoods. <kbd>phyddle</kbd> has a flexible command-line interface, making it easy to integrate deep learning approaches for phylogenetics into research workflows. Learn more about <kbd>phyddle</kbd> at https://phyddle.org.","PeriodicalId":501183,"journal":{"name":"bioRxiv - Evolutionary Biology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"phyddle: software for phylogenetic model exploration with deep learning\",\"authors\":\"Michael J. Landis, Ammon Thompson\",\"doi\":\"10.1101/2024.08.06.606717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many realistic phylogenetic models lack tractable likelihood functions, prohibiting their use with standard inference methods. We present phyddle, a pipeline-based toolkit for performing phylogenetic modeling tasks using likelihood-free deep learning approaches. <kbd>phyddle</kbd> coordinates modeling tasks through five analysis steps (<em>Simulate, Format, Train, Estimate</em>, and <em>Plot</em>) that transform raw phylogenetic datasets as input into numerical and visualized model-based output. Benchmarks show that <kbd>phyddle</kbd> accurately performs a range of inference tasks, such as estimating macroevolutionary parameters, selecting among continuous trait evolution models, and passing coverage tests for epidemiological models, even for models that lack tractable likelihoods. <kbd>phyddle</kbd> has a flexible command-line interface, making it easy to integrate deep learning approaches for phylogenetics into research workflows. Learn more about <kbd>phyddle</kbd> at https://phyddle.org.\",\"PeriodicalId\":501183,\"journal\":{\"name\":\"bioRxiv - Evolutionary Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Evolutionary Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.06.606717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多现实的系统发育模型缺乏可操作性强的似然函数,因此无法使用标准推理方法。phyddle 通过五个分析步骤(模拟、格式化、训练、估计和绘图)协调建模任务,将原始系统发育数据集作为输入转化为基于模型的数值化和可视化输出。基准测试表明,phyddle 能准确执行一系列推理任务,如估计宏观进化参数、在连续性状进化模型中进行选择,以及通过流行病学模型的覆盖率测试,即使是对缺乏可信似然的模型也是如此。了解有关 phyddle 的更多信息,请访问 https://phyddle.org。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
phyddle: software for phylogenetic model exploration with deep learning
Many realistic phylogenetic models lack tractable likelihood functions, prohibiting their use with standard inference methods. We present phyddle, a pipeline-based toolkit for performing phylogenetic modeling tasks using likelihood-free deep learning approaches. phyddle coordinates modeling tasks through five analysis steps (Simulate, Format, Train, Estimate, and Plot) that transform raw phylogenetic datasets as input into numerical and visualized model-based output. Benchmarks show that phyddle accurately performs a range of inference tasks, such as estimating macroevolutionary parameters, selecting among continuous trait evolution models, and passing coverage tests for epidemiological models, even for models that lack tractable likelihoods. phyddle has a flexible command-line interface, making it easy to integrate deep learning approaches for phylogenetics into research workflows. Learn more about phyddle at https://phyddle.org.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conserved Evolutionary Response to Whole Genome Duplication in Angiosperms Revealed Using High Resolution Gene Expression Profiling Adaptation to climate in the native and introduced ranges of a cosmopolitan plant Ecotype formation in the European anchovy fuelled by structural variants of different origins and genetic interactions with a southern lineage Most Beefalo cattle have no detectable bison genetic ancestry An Experimental Test of Local Adaptation in Native and Introduced Populations of an Ectomycorrhizal Fungus, Suillus luteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1