评估水下浮动隧道裂缝造成的泄漏及其传播特性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-06 DOI:10.1007/s12205-024-1189-y
Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee
{"title":"评估水下浮动隧道裂缝造成的泄漏及其传播特性","authors":"Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee","doi":"10.1007/s12205-024-1189-y","DOIUrl":null,"url":null,"abstract":"<p>The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Leakage Due to Submerged Floating Tunnel Crack and Its Propagation Characteristics\",\"authors\":\"Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee\",\"doi\":\"10.1007/s12205-024-1189-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1189-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1189-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水下浮动隧道(Submerged floating tunnel,SFT)是一种利用水的浮力实现隧道漂浮的隧道。水下浮动隧道通常承受高水压和环境负荷,如波浪和水流,这与典型的地下隧道不同。在这些海底隧道中,由于与外部物体(如船只)、用于锚定的系泊缆线发生碰撞,以及结构疲劳失效,可能会突然发生大量漏水。为了应对这些突发情况,有必要开发漏水灾害预防系统。然而,隧道泄漏及其在隧道内的传播特性尚未得到深入研究。在本研究中,使用商业软件 FLOW-3D 进行了数值模拟,以评估由于隧道局部损坏而流经隧道的水流特征。在模拟中,对 SFT 的代表性横截面进行了建模,并评估了与裂缝大小和水深有关的水流传播特性。结果证实,裂缝大小和水深对泄漏的传播特性有很大影响。这项研究的结果有望成为设计 SFT 泄漏灾害预防系统的有用数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Leakage Due to Submerged Floating Tunnel Crack and Its Propagation Characteristics

The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1