Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee
{"title":"评估水下浮动隧道裂缝造成的泄漏及其传播特性","authors":"Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee","doi":"10.1007/s12205-024-1189-y","DOIUrl":null,"url":null,"abstract":"<p>The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Leakage Due to Submerged Floating Tunnel Crack and Its Propagation Characteristics\",\"authors\":\"Jae-Hyun Kim, Seungbo Shim, Suk-Min Kong, Seong-Won Lee\",\"doi\":\"10.1007/s12205-024-1189-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1189-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1189-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of Leakage Due to Submerged Floating Tunnel Crack and Its Propagation Characteristics
The submerged floating tunnel (SFT) is a type that allows tunnel floating owing to the water buoyancy. SFTs are often subjected to high-water pressure and environmental loads, such as waves and currents, which differ from those experienced by typical underground tunnels. In these SFTs, a sudden, large water leak can occur owing to collisions with external objects (such as ships), mooring lines for anchoring, and structural fatigue failure. To address these unexpected situations, it is necessary to develop a disaster prevention system for leakages. However, tunnel leaks and their propagation characteristics within tunnels have not been studied in depth. In this study, numerical simulations were performed using the commercial software program FLOW-3D to evaluate the characteristics of the water flowing through the tunnel owing to local damages to tunnel segments. In the simulations, a representative cross-section of the SFT was modeled, and the water propagation characteristics with respect to the crack size and water depth were evaluated. The results confirmed that the crack size and water depth significantly affected the propagation characteristics of the leaks. The results of this study are expected to be used as useful data for the design of disaster prevention systems for leaks in SFT.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.