XiangYan Fan, FangWen Wu, LaiJun Liu, Meng Du, LiGuo Zhao, JinCheng Cao, Song Lei
{"title":"单箱双室节段箱梁剪切性能的实验和理论研究","authors":"XiangYan Fan, FangWen Wu, LaiJun Liu, Meng Du, LiGuo Zhao, JinCheng Cao, Song Lei","doi":"10.1007/s12205-024-2082-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, the failure mode and mechanism of single-box two-compartment segmental box girders under flexural shear coupling were experimentally studied. Loading tests were conducted on five scaled girders, and the effects of the design parameters on the shear performance were analyzed. The test variables included the loading methods, ratio of internal to external prestressing tendons, and key joint types (vertical and horizontal keys). The test results indicated that different loading methods produce different stress characteristics and damage modes; however, the difference in the ultimate load capacity was negligible. The greater the number of internal prestressing tendons, the greater the bearing capacity. The stress increment of the internal bottom prestress reinforcement was great than the external prestressing tendons. Monolithic box girders could maintain approximately 1.8 times as much pressure as segmental box girders. With the increase of shear span ratio, the load carrying capacity of the segmental beam decreases. Vertical key teeth had a slightly higher bearing capacity than horizontal key teeth. Vertical keys are recommended for segmental box girders owing to their excellent structural properties and ease of construction. and the structure. AASHTO can better predict the shear capacity of segmental beams, while the Chinese code is applicable to segmental beams with appropriate hoop ratio.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Theoretical Study on the Shear Performance of Single-Box Double-Compartment Segmental Box Girder\",\"authors\":\"XiangYan Fan, FangWen Wu, LaiJun Liu, Meng Du, LiGuo Zhao, JinCheng Cao, Song Lei\",\"doi\":\"10.1007/s12205-024-2082-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the failure mode and mechanism of single-box two-compartment segmental box girders under flexural shear coupling were experimentally studied. Loading tests were conducted on five scaled girders, and the effects of the design parameters on the shear performance were analyzed. The test variables included the loading methods, ratio of internal to external prestressing tendons, and key joint types (vertical and horizontal keys). The test results indicated that different loading methods produce different stress characteristics and damage modes; however, the difference in the ultimate load capacity was negligible. The greater the number of internal prestressing tendons, the greater the bearing capacity. The stress increment of the internal bottom prestress reinforcement was great than the external prestressing tendons. Monolithic box girders could maintain approximately 1.8 times as much pressure as segmental box girders. With the increase of shear span ratio, the load carrying capacity of the segmental beam decreases. Vertical key teeth had a slightly higher bearing capacity than horizontal key teeth. Vertical keys are recommended for segmental box girders owing to their excellent structural properties and ease of construction. and the structure. AASHTO can better predict the shear capacity of segmental beams, while the Chinese code is applicable to segmental beams with appropriate hoop ratio.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2082-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2082-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental and Theoretical Study on the Shear Performance of Single-Box Double-Compartment Segmental Box Girder
In this study, the failure mode and mechanism of single-box two-compartment segmental box girders under flexural shear coupling were experimentally studied. Loading tests were conducted on five scaled girders, and the effects of the design parameters on the shear performance were analyzed. The test variables included the loading methods, ratio of internal to external prestressing tendons, and key joint types (vertical and horizontal keys). The test results indicated that different loading methods produce different stress characteristics and damage modes; however, the difference in the ultimate load capacity was negligible. The greater the number of internal prestressing tendons, the greater the bearing capacity. The stress increment of the internal bottom prestress reinforcement was great than the external prestressing tendons. Monolithic box girders could maintain approximately 1.8 times as much pressure as segmental box girders. With the increase of shear span ratio, the load carrying capacity of the segmental beam decreases. Vertical key teeth had a slightly higher bearing capacity than horizontal key teeth. Vertical keys are recommended for segmental box girders owing to their excellent structural properties and ease of construction. and the structure. AASHTO can better predict the shear capacity of segmental beams, while the Chinese code is applicable to segmental beams with appropriate hoop ratio.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.