{"title":"比较人工神经网络和基于回归的日溶解氧浓度建模方法:基于长期监测数据的研究","authors":"Sinan Nacar, Betul Mete, Adem Bayram","doi":"10.1007/s12205-024-2613-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Artificial Neural Networks and Regression-based Methods for Modeling Daily Dissolved Oxygen Concentration: A Study Based on Long-term Monitored Data\",\"authors\":\"Sinan Nacar, Betul Mete, Adem Bayram\",\"doi\":\"10.1007/s12205-024-2613-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2613-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2613-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparing Artificial Neural Networks and Regression-based Methods for Modeling Daily Dissolved Oxygen Concentration: A Study Based on Long-term Monitored Data
In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.