Behnam Bagheri, Mohammad Mohsen Toufigh, Vahid Toufigh
{"title":"利用随机场数值分析长颗粒桩锚的拔出能力","authors":"Behnam Bagheri, Mohammad Mohsen Toufigh, Vahid Toufigh","doi":"10.1007/s12205-024-0518-5","DOIUrl":null,"url":null,"abstract":"<p>The undrained pullout capacity of granular pile anchors (GPA) can be sensitive to changes in soil shear strength. Researchers are intrigued by evaluating spatial variations in soil behavior in geostructures. However, there is a dearth of research on the effect of spatial soil variability on long GPA pullout capacity. The present study conducted probabilistic analyses of GPA pullout capacity using the local average subdivision method (LAS), considering the spatial variation of soil shear strength and its correlation with the soil elastic and shear modulus. The finite-difference method was used to predict GPA behavior in each random field realization to determine the probability of failure using the Monte Carlo method. The results demonstrated that consideration of GPA’s friction angle as a random parameter had negligible effects on pullout capacity. Moreover, the surface heave was limited by increasing the length/diameter ratio to more than 10. The pullout capacity of the GPA decreased by 30% due to a higher horizontal to vertical correlation length exceeding 5. In addition, the safety factor for the empirical equation obtained 1.5 and 2 for coefficient of variation higher and less than 0.2 in an isotropic random field, respectively. Finally, the concrete granular pile anchors were proposed to increase the pullout capacity and reduce corrosion effects on the anchor bar.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"52 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullout Capacity of Long Granular Pile Anchors Using Numerical Analyses of Random Fields\",\"authors\":\"Behnam Bagheri, Mohammad Mohsen Toufigh, Vahid Toufigh\",\"doi\":\"10.1007/s12205-024-0518-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The undrained pullout capacity of granular pile anchors (GPA) can be sensitive to changes in soil shear strength. Researchers are intrigued by evaluating spatial variations in soil behavior in geostructures. However, there is a dearth of research on the effect of spatial soil variability on long GPA pullout capacity. The present study conducted probabilistic analyses of GPA pullout capacity using the local average subdivision method (LAS), considering the spatial variation of soil shear strength and its correlation with the soil elastic and shear modulus. The finite-difference method was used to predict GPA behavior in each random field realization to determine the probability of failure using the Monte Carlo method. The results demonstrated that consideration of GPA’s friction angle as a random parameter had negligible effects on pullout capacity. Moreover, the surface heave was limited by increasing the length/diameter ratio to more than 10. The pullout capacity of the GPA decreased by 30% due to a higher horizontal to vertical correlation length exceeding 5. In addition, the safety factor for the empirical equation obtained 1.5 and 2 for coefficient of variation higher and less than 0.2 in an isotropic random field, respectively. Finally, the concrete granular pile anchors were proposed to increase the pullout capacity and reduce corrosion effects on the anchor bar.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0518-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0518-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Pullout Capacity of Long Granular Pile Anchors Using Numerical Analyses of Random Fields
The undrained pullout capacity of granular pile anchors (GPA) can be sensitive to changes in soil shear strength. Researchers are intrigued by evaluating spatial variations in soil behavior in geostructures. However, there is a dearth of research on the effect of spatial soil variability on long GPA pullout capacity. The present study conducted probabilistic analyses of GPA pullout capacity using the local average subdivision method (LAS), considering the spatial variation of soil shear strength and its correlation with the soil elastic and shear modulus. The finite-difference method was used to predict GPA behavior in each random field realization to determine the probability of failure using the Monte Carlo method. The results demonstrated that consideration of GPA’s friction angle as a random parameter had negligible effects on pullout capacity. Moreover, the surface heave was limited by increasing the length/diameter ratio to more than 10. The pullout capacity of the GPA decreased by 30% due to a higher horizontal to vertical correlation length exceeding 5. In addition, the safety factor for the empirical equation obtained 1.5 and 2 for coefficient of variation higher and less than 0.2 in an isotropic random field, respectively. Finally, the concrete granular pile anchors were proposed to increase the pullout capacity and reduce corrosion effects on the anchor bar.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering