{"title":"用于异构图表示学习的多图聚合图神经网络","authors":"Shuailei Zhu, Xiaofeng Wang, Shuaiming Lai, Yuntao Chen, Wenchao Zhai, Daying Quan, Yuanyuan Qi, Laishui Lv","doi":"10.1007/s13042-024-02294-1","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous graph neural networks have attracted considerable attention for their proficiency in handling intricate heterogeneous structures. However, most existing methods model semantic relationships in heterogeneous graphs by manually defining meta-paths, inadvertently overlooking the inherent incompleteness of such graphs. To address this issue, we propose a multi-graph aggregated graph neural network (MGAGNN) for heterogeneous graph representation learning, which simultaneously leverages attribute similarity and high-order semantic information between nodes. Specifically, MGAGNN first employs the feature graph generator to generate a feature graph for completing the original graph structure. A semantic graph is then generated using a semantic graph generator, capturing higher-order semantic information through automatic meta-path learning. Finally, we aggregate the two candidate graphs to reconstruct a new heterogeneous graph and learn node embedding by graph convolutional networks. Extensive experiments on real-world datasets demonstrate the superior performance of the proposed method over state-of-the-art approaches.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-graph aggregated graph neural network for heterogeneous graph representation learning\",\"authors\":\"Shuailei Zhu, Xiaofeng Wang, Shuaiming Lai, Yuntao Chen, Wenchao Zhai, Daying Quan, Yuanyuan Qi, Laishui Lv\",\"doi\":\"10.1007/s13042-024-02294-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterogeneous graph neural networks have attracted considerable attention for their proficiency in handling intricate heterogeneous structures. However, most existing methods model semantic relationships in heterogeneous graphs by manually defining meta-paths, inadvertently overlooking the inherent incompleteness of such graphs. To address this issue, we propose a multi-graph aggregated graph neural network (MGAGNN) for heterogeneous graph representation learning, which simultaneously leverages attribute similarity and high-order semantic information between nodes. Specifically, MGAGNN first employs the feature graph generator to generate a feature graph for completing the original graph structure. A semantic graph is then generated using a semantic graph generator, capturing higher-order semantic information through automatic meta-path learning. Finally, we aggregate the two candidate graphs to reconstruct a new heterogeneous graph and learn node embedding by graph convolutional networks. Extensive experiments on real-world datasets demonstrate the superior performance of the proposed method over state-of-the-art approaches.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02294-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02294-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-graph aggregated graph neural network for heterogeneous graph representation learning
Heterogeneous graph neural networks have attracted considerable attention for their proficiency in handling intricate heterogeneous structures. However, most existing methods model semantic relationships in heterogeneous graphs by manually defining meta-paths, inadvertently overlooking the inherent incompleteness of such graphs. To address this issue, we propose a multi-graph aggregated graph neural network (MGAGNN) for heterogeneous graph representation learning, which simultaneously leverages attribute similarity and high-order semantic information between nodes. Specifically, MGAGNN first employs the feature graph generator to generate a feature graph for completing the original graph structure. A semantic graph is then generated using a semantic graph generator, capturing higher-order semantic information through automatic meta-path learning. Finally, we aggregate the two candidate graphs to reconstruct a new heterogeneous graph and learn node embedding by graph convolutional networks. Extensive experiments on real-world datasets demonstrate the superior performance of the proposed method over state-of-the-art approaches.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems