采用信任区域策略和耐久时间法进行序列二次编程的结构抗震设计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-07 DOI:10.1007/s12205-024-0306-2
Yue Feng
{"title":"采用信任区域策略和耐久时间法进行序列二次编程的结构抗震设计","authors":"Yue Feng","doi":"10.1007/s12205-024-0306-2","DOIUrl":null,"url":null,"abstract":"<p>The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Design of Structures by Sequential Quadratic Programming with Trust Region Strategy and Endurance Time Method\",\"authors\":\"Yue Feng\",\"doi\":\"10.1007/s12205-024-0306-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0306-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0306-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于存在高度非线性和计算复杂性,对承受地震荷载的结构进行优化设计是一项重大挑战。为应对这些挑战,本文提出了一种将序列二次编程与信任区域策略(SQP-TR)和耐久时间法(ETM)相结合的新方法。SQP-TR 最初是作为一种数值优化方法提出的,它通过将约束条件线性化和用泰勒展开近似目标函数,以及采用滤波法和信任区域策略来确保收敛性和可行性,从而解决优化问题。一个五层线性框架验证了其有效性,并展示了可喜的成果。ETM 作为一种地震分析方法被成功应用于非线性时间历程分析,以捕捉地震荷载的动态输入特征并评估结构的非线性动态行为。一个具有非线性的九层结构演示了该方法的实际应用,结果令人满意。最后,将所提出的方法应用于优化地震荷载下的十二层三维(3D)钢筋混凝土(RC)非线性建筑,结果表明该方法可以高精度、高效率地完成最优抗震设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Design of Structures by Sequential Quadratic Programming with Trust Region Strategy and Endurance Time Method

The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1