{"title":"采用信任区域策略和耐久时间法进行序列二次编程的结构抗震设计","authors":"Yue Feng","doi":"10.1007/s12205-024-0306-2","DOIUrl":null,"url":null,"abstract":"<p>The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Design of Structures by Sequential Quadratic Programming with Trust Region Strategy and Endurance Time Method\",\"authors\":\"Yue Feng\",\"doi\":\"10.1007/s12205-024-0306-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0306-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0306-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Seismic Design of Structures by Sequential Quadratic Programming with Trust Region Strategy and Endurance Time Method
The optimal design of structures subjected to seismic loading poses significant challenges due to the presence of high nonlinearity and computational complexity. To address these challenges, this paper presents a novel methodology that combines Sequential Quadratic Programming with Trust-Region strategy (SQP-TR) and Endurance Time Method (ETM). SQP-TR is initially presented as a numerical optimization approach to address optimization problems by linearizing the constraints and approximating the objective function with Taylor expansion, as well as employing the filter method and trust region strategy to ensure convergence and feasibility. A five-story linear frame validates its effectiveness and demonstrates promising outcomes. ETM is successfully implemented as a seismic analysis approach to perform nonlinear time history analyses in order to capture the dynamic input feature of the seismic load and evaluate the nonlinear dynamic behaviors of structures. Its practical application is demonstrated by a nine-story structure with nonlinearity, which shows satisfactory results. Finally, the proposed methodology is applied to optimize a twelve-story three-Dimensional (3D) Reinforced Concrete (RC) nonlinear building under seismic load, and the results demonstrate that the method can accomplish optimal seismic design with high accuracy and efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.