{"title":"使用 MLR、ANN 和 RF 模型并结合小波变换预测雅鲁藏布江(潘都站)流量","authors":"Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Varsha Sachin Khandekar, Shivakumar B. Khaple","doi":"10.1007/s12205-024-2521-2","DOIUrl":null,"url":null,"abstract":"<p>In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (<i>NS</i>) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m<sup>3</sup>/s), 0.998 (514.21 m<sup>3</sup>/s), 0.996 (713.62 m<sup>3</sup>/s), 0.991 (1030.83 m<sup>3</sup>/s), and 0.977 (1638.64 m<sup>3</sup>/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform\",\"authors\":\"Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Varsha Sachin Khandekar, Shivakumar B. Khaple\",\"doi\":\"10.1007/s12205-024-2521-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (<i>NS</i>) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m<sup>3</sup>/s), 0.998 (514.21 m<sup>3</sup>/s), 0.996 (713.62 m<sup>3</sup>/s), 0.991 (1030.83 m<sup>3</sup>/s), and 0.977 (1638.64 m<sup>3</sup>/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2521-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2521-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform
In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (NS) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m3/s), 0.998 (514.21 m3/s), 0.996 (713.62 m3/s), 0.991 (1030.83 m3/s), and 0.977 (1638.64 m3/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.