基于单因素定律的铀尾矿库滩面氡挥发率响应面预测模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-12 DOI:10.1007/s10967-024-09687-0
Yifan Chen, Zhangkai Chen, Xianwei Wu, Juntao Huang, Yong Liu
{"title":"基于单因素定律的铀尾矿库滩面氡挥发率响应面预测模型","authors":"Yifan Chen,&nbsp;Zhangkai Chen,&nbsp;Xianwei Wu,&nbsp;Juntao Huang,&nbsp;Yong Liu","doi":"10.1007/s10967-024-09687-0","DOIUrl":null,"url":null,"abstract":"<div><p>Radon is a natural radioactive gas, which has great radiation hazards. Mastering the radon exhalation law under complex conditions is of great significance to the safety and stability of uranium tailings pond. Based on the self-developed artificial microclimate chamber, the single factor influence of water content, temperature and crack rate of overburden soil on radon exhalation rate of uranium tailings pond was explored through simulation experiments, and the corresponding single factor mathematical model was obtained. The response surface model of radon exhalation rate was constructed by combining whale optimization algorithm to achieve accurate prediction of radon exhalation rate. The test results of simulated seismic station vibration test also confirm the scientificity of the model. The results of this study can be used not only to guide the prediction and prevention of radon, but also to guide the early warning of uranium tailings pond instability.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response surface prediction model of radon exhalation rate on beach surface of uranium tailings pond based on single factor law\",\"authors\":\"Yifan Chen,&nbsp;Zhangkai Chen,&nbsp;Xianwei Wu,&nbsp;Juntao Huang,&nbsp;Yong Liu\",\"doi\":\"10.1007/s10967-024-09687-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radon is a natural radioactive gas, which has great radiation hazards. Mastering the radon exhalation law under complex conditions is of great significance to the safety and stability of uranium tailings pond. Based on the self-developed artificial microclimate chamber, the single factor influence of water content, temperature and crack rate of overburden soil on radon exhalation rate of uranium tailings pond was explored through simulation experiments, and the corresponding single factor mathematical model was obtained. The response surface model of radon exhalation rate was constructed by combining whale optimization algorithm to achieve accurate prediction of radon exhalation rate. The test results of simulated seismic station vibration test also confirm the scientificity of the model. The results of this study can be used not only to guide the prediction and prevention of radon, but also to guide the early warning of uranium tailings pond instability.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10967-024-09687-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09687-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氡是一种天然放射性气体,具有极大的辐射危害。掌握复杂条件下氡的呼出规律,对铀尾矿库的安全稳定具有重要意义。基于自主研发的人工小气候室,通过模拟实验探讨了覆土含水率、温度、裂隙率等单因素对铀尾矿库氡呼出率的影响,并得到了相应的单因素数学模型。结合鲸鱼优化算法,构建了氡呼出率响应面模型,实现了对氡呼出率的精确预测。模拟地震台振动试验结果也证实了模型的科学性。该研究结果不仅可用于指导氡的预测和防治,还可用于指导铀尾矿库失稳预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response surface prediction model of radon exhalation rate on beach surface of uranium tailings pond based on single factor law

Radon is a natural radioactive gas, which has great radiation hazards. Mastering the radon exhalation law under complex conditions is of great significance to the safety and stability of uranium tailings pond. Based on the self-developed artificial microclimate chamber, the single factor influence of water content, temperature and crack rate of overburden soil on radon exhalation rate of uranium tailings pond was explored through simulation experiments, and the corresponding single factor mathematical model was obtained. The response surface model of radon exhalation rate was constructed by combining whale optimization algorithm to achieve accurate prediction of radon exhalation rate. The test results of simulated seismic station vibration test also confirm the scientificity of the model. The results of this study can be used not only to guide the prediction and prevention of radon, but also to guide the early warning of uranium tailings pond instability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1