Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti
{"title":"不确定性传播与动态稳健风险度量","authors":"Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti","doi":"10.1287/moor.2023.0267","DOIUrl":null,"url":null,"abstract":"We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Propagation and Dynamic Robust Risk Measures\",\"authors\":\"Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti\",\"doi\":\"10.1287/moor.2023.0267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了一种量化动态环境中不确定性传播的框架。具体来说,我们定义了动态不确定性集,明确用于有限时间范围内的离散随机过程。这些动态不确定性集捕捉了随机过程和模型的不确定性,并考虑了分布模糊性等因素。不确定性集的例子包括由瓦瑟斯坦距离和 f-divergences 引起的不确定性集。我们进一步将动态稳健风险度量定义为不确定性集内所有候选风险的上集。我们以公理的方式讨论了不确定性集的条件,这些条件导致了动态稳健风险度量的众所周知的特性,如凸性和一致性。此外,我们还讨论了动态不确定性集的必要和充分属性,这些属性会导致动态稳健风险度量的时间一致性。我们发现,源于 f-divergences 的不确定性集会导致强时间一致性,而 Wasserstein 距离则会导致一种新的时间一致性概念,即弱递归性。此外,我们还证明了动态稳健风险度量是强时间一致性或弱递归性的,当且仅当它允许静态不确定性集产生的一步条件稳健风险度量的递归表示时:M. Mailhot 和 S. M. Pesenti 感谢加拿大统计科学研究所 (CANSSI) 和加拿大自然科学与工程研究理事会 [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289] 的支持。M. R. Moresco 感谢地平线博士后奖学金的支持。
Uncertainty Propagation and Dynamic Robust Risk Measures
We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.