{"title":"用于快速模拟模块化直接空气捕获系统的数字孪生系统","authors":"T.I. Zohdi","doi":"10.1016/j.ijengsci.2024.104120","DOIUrl":null,"url":null,"abstract":"<div><p>There has been tremendous recent interest in Direct Air Capture (DAC) systems. A key part of any DAC system are the multiple air intake units. In particular, the arrangement of such units for optimal capture and sequestration is critical. Accordingly, this work develops an easy to use model for a modular unit system, where an approximate flow field is computed for each unit and the aggregate flow field is developed by summing the fields from each unit. This allows for a modular framework that can be used for rapid simulation and design of an overall DAC system. The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine which parameter combinations can deliver the maximum sequestration of tracer plume particles for the minimum amount of energy input. In order to cast the objective mathematically, we set up an inverse as a Machine Learning Algorithm (MLA); specifically a Genetic MLA (G-MLA) variant, which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104120"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A digital-twin for rapid simulation modular Direct Air Capture systems\",\"authors\":\"T.I. Zohdi\",\"doi\":\"10.1016/j.ijengsci.2024.104120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There has been tremendous recent interest in Direct Air Capture (DAC) systems. A key part of any DAC system are the multiple air intake units. In particular, the arrangement of such units for optimal capture and sequestration is critical. Accordingly, this work develops an easy to use model for a modular unit system, where an approximate flow field is computed for each unit and the aggregate flow field is developed by summing the fields from each unit. This allows for a modular framework that can be used for rapid simulation and design of an overall DAC system. The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine which parameter combinations can deliver the maximum sequestration of tracer plume particles for the minimum amount of energy input. In order to cast the objective mathematically, we set up an inverse as a Machine Learning Algorithm (MLA); specifically a Genetic MLA (G-MLA) variant, which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"203 \",\"pages\":\"Article 104120\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001046\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001046","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A digital-twin for rapid simulation modular Direct Air Capture systems
There has been tremendous recent interest in Direct Air Capture (DAC) systems. A key part of any DAC system are the multiple air intake units. In particular, the arrangement of such units for optimal capture and sequestration is critical. Accordingly, this work develops an easy to use model for a modular unit system, where an approximate flow field is computed for each unit and the aggregate flow field is developed by summing the fields from each unit. This allows for a modular framework that can be used for rapid simulation and design of an overall DAC system. The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine which parameter combinations can deliver the maximum sequestration of tracer plume particles for the minimum amount of energy input. In order to cast the objective mathematically, we set up an inverse as a Machine Learning Algorithm (MLA); specifically a Genetic MLA (G-MLA) variant, which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.