集体趋化的动态簇场模型

Aditya Paspunurwar, Adrian Moure, Hector Gomez
{"title":"集体趋化的动态簇场模型","authors":"Aditya Paspunurwar, Adrian Moure, Hector Gomez","doi":"arxiv-2408.04748","DOIUrl":null,"url":null,"abstract":"Collective migration of eukaryotic cells is often guided by chemotaxis, and\nis critical in several biological processes, such as cancer metastasis, wound\nhealing, and embryogenesis. Understanding collective chemotaxis has challenged\nexperimental, theoretical and computational scientists because cells can sense\nvery small chemoattractant gradients that are tightly controlled by cell-cell\ninteractions and the regulation of the chemoattractant distribution by the\ncells. Computational models of collective cell migration that offer a\nhigh-fidelity resolution of the cell motion and chemoattractant dynamics in the\nextracellular space have been limited to a small number of cells. Here, we\npresent Dynamic cluster field modeling (DCF), a novel computational method that\nenables simulations of collective chemotaxis of cellular systems with O(1000)\ncells and high-resolution transport dynamics of the chemoattractant in the\ntime-evolving extracellular space. We illustrate the efficiency and predictive\ncapabilities of our approach by comparing our numerical simulations with\nexperiments in multiple scenarios that involve chemoattractant secretion and\nuptake by the migrating cells, regulation of the attractant distribution by\ncell motion, and interactions of the chemoattractant with an enzyme. The\nproposed algorithm opens new opportunities to address outstanding problems that\ninvolve collective cell migration in the central nervous system, immune\nresponse and cancer metastasis.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic cluster field modeling of collective chemotaxis\",\"authors\":\"Aditya Paspunurwar, Adrian Moure, Hector Gomez\",\"doi\":\"arxiv-2408.04748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective migration of eukaryotic cells is often guided by chemotaxis, and\\nis critical in several biological processes, such as cancer metastasis, wound\\nhealing, and embryogenesis. Understanding collective chemotaxis has challenged\\nexperimental, theoretical and computational scientists because cells can sense\\nvery small chemoattractant gradients that are tightly controlled by cell-cell\\ninteractions and the regulation of the chemoattractant distribution by the\\ncells. Computational models of collective cell migration that offer a\\nhigh-fidelity resolution of the cell motion and chemoattractant dynamics in the\\nextracellular space have been limited to a small number of cells. Here, we\\npresent Dynamic cluster field modeling (DCF), a novel computational method that\\nenables simulations of collective chemotaxis of cellular systems with O(1000)\\ncells and high-resolution transport dynamics of the chemoattractant in the\\ntime-evolving extracellular space. We illustrate the efficiency and predictive\\ncapabilities of our approach by comparing our numerical simulations with\\nexperiments in multiple scenarios that involve chemoattractant secretion and\\nuptake by the migrating cells, regulation of the attractant distribution by\\ncell motion, and interactions of the chemoattractant with an enzyme. The\\nproposed algorithm opens new opportunities to address outstanding problems that\\ninvolve collective cell migration in the central nervous system, immune\\nresponse and cancer metastasis.\",\"PeriodicalId\":501040,\"journal\":{\"name\":\"arXiv - PHYS - Biological Physics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真核细胞的集体迁移通常由趋化作用引导,在癌症转移、伤口愈合和胚胎发育等多个生物过程中至关重要。由于细胞能感知非常微小的趋化梯度,而这种梯度受细胞-细胞相互作用和细胞对趋化物质分布的调节的严格控制,因此理解集体趋化现象对实验、理论和计算科学家提出了挑战。细胞集体迁移的计算模型能高保真地解析细胞运动和细胞外空间的趋化因子动态,但这种模型仅限于少数细胞。在这里,我们将介绍动态簇场建模(Dynamic cluster field modeling,DCF),这是一种新颖的计算方法,可以模拟细胞数为 O(1000)个的细胞系统的集体趋化以及趋化物质在随时间演变的细胞外空间的高分辨率迁移动力学。我们通过将数值模拟与多种情况下的实验进行比较,包括迁移细胞分泌和吸收趋化吸引剂、细胞运动对吸引剂分布的调节以及趋化吸引剂与酶的相互作用,说明了我们的方法的效率和预测能力。提出的算法为解决涉及中枢神经系统细胞集体迁移、免疫反应和癌症转移等悬而未决的问题提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic cluster field modeling of collective chemotaxis
Collective migration of eukaryotic cells is often guided by chemotaxis, and is critical in several biological processes, such as cancer metastasis, wound healing, and embryogenesis. Understanding collective chemotaxis has challenged experimental, theoretical and computational scientists because cells can sense very small chemoattractant gradients that are tightly controlled by cell-cell interactions and the regulation of the chemoattractant distribution by the cells. Computational models of collective cell migration that offer a high-fidelity resolution of the cell motion and chemoattractant dynamics in the extracellular space have been limited to a small number of cells. Here, we present Dynamic cluster field modeling (DCF), a novel computational method that enables simulations of collective chemotaxis of cellular systems with O(1000) cells and high-resolution transport dynamics of the chemoattractant in the time-evolving extracellular space. We illustrate the efficiency and predictive capabilities of our approach by comparing our numerical simulations with experiments in multiple scenarios that involve chemoattractant secretion and uptake by the migrating cells, regulation of the attractant distribution by cell motion, and interactions of the chemoattractant with an enzyme. The proposed algorithm opens new opportunities to address outstanding problems that involve collective cell migration in the central nervous system, immune response and cancer metastasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Thresholds in Presence of Epistatic Interactions Choice of Reference Surfaces to assess Plant Health through leaf scale temperature monitoring Physical Insights into Electromagnetic Efficiency of Wireless Implantable Bioelectronics Pseudo-RNA with parallel aligned single-strands and periodic base sequence as a new universality class Hydrodynamic hovering of swimming bacteria above surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1