Miaomiao Tian , Jiale Liu , Zhili Chen , Shaowei Wang
{"title":"提高效率的隐私保护逻辑回归","authors":"Miaomiao Tian , Jiale Liu , Zhili Chen , Shaowei Wang","doi":"10.1016/j.jisa.2024.103848","DOIUrl":null,"url":null,"abstract":"<div><p>Logistic regression is a well-known method for classification and is being widely used in our daily life. To obtain a logistic regression model with sufficient accuracy, collecting a large number of data samples from multiple sources is necessary. However, in nowadays a concern about the leakage of private information contained in data samples becomes increasingly prominent, and thus privacy-preserving logistic regression that enables training logistic regression models without privacy leakage has received great attention from the community. Mohassel and Zhang at IEEE S&P’17 presented a significant protocol for privacy-preserving logistic regression in two-server setting, where two non-colluding servers collaboratively train logistic regression models in an offline–online manner. In this work, we propose a new two-server-based protocol for privacy-preserving logistic regression with an efficient approach to activation function evaluation, which incurs much less computational overhead than Mohassel–Zhang protocol while requiring the same number of online rounds. We also present a round-efficient protocol for generating correlated randomness that will be used subsequently in our activation function evaluation. We implement our protocol in C++ and the experimental results validate its efficiency.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"85 ","pages":"Article 103848"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving logistic regression with improved efficiency\",\"authors\":\"Miaomiao Tian , Jiale Liu , Zhili Chen , Shaowei Wang\",\"doi\":\"10.1016/j.jisa.2024.103848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Logistic regression is a well-known method for classification and is being widely used in our daily life. To obtain a logistic regression model with sufficient accuracy, collecting a large number of data samples from multiple sources is necessary. However, in nowadays a concern about the leakage of private information contained in data samples becomes increasingly prominent, and thus privacy-preserving logistic regression that enables training logistic regression models without privacy leakage has received great attention from the community. Mohassel and Zhang at IEEE S&P’17 presented a significant protocol for privacy-preserving logistic regression in two-server setting, where two non-colluding servers collaboratively train logistic regression models in an offline–online manner. In this work, we propose a new two-server-based protocol for privacy-preserving logistic regression with an efficient approach to activation function evaluation, which incurs much less computational overhead than Mohassel–Zhang protocol while requiring the same number of online rounds. We also present a round-efficient protocol for generating correlated randomness that will be used subsequently in our activation function evaluation. We implement our protocol in C++ and the experimental results validate its efficiency.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"85 \",\"pages\":\"Article 103848\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001509\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001509","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Privacy-preserving logistic regression with improved efficiency
Logistic regression is a well-known method for classification and is being widely used in our daily life. To obtain a logistic regression model with sufficient accuracy, collecting a large number of data samples from multiple sources is necessary. However, in nowadays a concern about the leakage of private information contained in data samples becomes increasingly prominent, and thus privacy-preserving logistic regression that enables training logistic regression models without privacy leakage has received great attention from the community. Mohassel and Zhang at IEEE S&P’17 presented a significant protocol for privacy-preserving logistic regression in two-server setting, where two non-colluding servers collaboratively train logistic regression models in an offline–online manner. In this work, we propose a new two-server-based protocol for privacy-preserving logistic regression with an efficient approach to activation function evaluation, which incurs much less computational overhead than Mohassel–Zhang protocol while requiring the same number of online rounds. We also present a round-efficient protocol for generating correlated randomness that will be used subsequently in our activation function evaluation. We implement our protocol in C++ and the experimental results validate its efficiency.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.